मराठी

X = 2 पर f(x) = ,यदिk,यदि{2x+2-164x-16, यदि x≠2k, यदि x=2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  

बेरीज

उत्तर

हमारे पास है, x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  

क्योंकि, f(x) x = 2 पर संतत है।

∴ f(2) = `lim_(x -> 2) "f"(x)`

∴ k = `lim_(x -> 2) (2^(x + 2) - 16)/(4^x - 16)`

= `lim_(x -> 2) (4(2^x - 4))/((2^x - 4)(2^x + 4))`

= `lim_(x -> 2) 4/(2^x + 4)`

= `4/(4 + 4)`

= `1/2`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 12 | पृष्ठ १०६

संबंधित प्रश्‍न

अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


 x = 2 पर f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` 


दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


`sin xy + x/y` = x2 – y


tan–1(x2 + y2) = a


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[1, 4] में f(x) = `1/(4x - 1)`


[1, 5] में f(x) = `sqrt(25 - x^2)` 


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


 यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।


 यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।


x3 के सापेक्ष  x2 अवकलज ______ है।


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×