Advertisements
Advertisements
प्रश्न
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
पर्याय
1
`sqrt(3)`
2
इनमें से कोई नहीं
उत्तर
सही उत्तर `underline(sqrt(3))` है।
व्याख्या:
यह देखते हुए: f(x) = `x + 1/x`, x ∈ [1, 3]
हम जानते हैं कि यदि f(x) = `x + 1/x`, x ∈ [1, 3] माध्य मान की सभी स्थिति को संतुष्ट करता है तो प्रमेय
f'(c) = `("f"("b") - "f"("a"))/("b" - "a")` जहाँ a = 1 और b = 3
⇒ `1 - 1/"c"^2 = ((3 + 1/3) - (1 + 1/1))/(3 - 1)`
⇒ `1 - 1/"c"^2 = (10/3 - 2)/2`
⇒ `1 - 1/"c"^2 = 4/6 = 2/3`
⇒ `- 1/"c"^2 = 2/3 - 1`
⇒ `- 1/"c"^2 = -1/3`
⇒ `1/"c"^2 = 1/3`
⇒ c = `+- sqrt(3)`.
यहाँ c = `sqrt(3) ∈ (1, 3)`
संबंधित प्रश्न
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(log x)log x, x > 1
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
cos |x| प्रत्येक स्थान पर अवकलनीय है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
sinx2 + sin2x + sin2(x2)
sinmx . cosnx
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
[0, π] में f(x) = sinx – sin2x
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।