Advertisements
Advertisements
प्रश्न
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
विकल्प
1
`sqrt(3)`
2
इनमें से कोई नहीं
उत्तर
सही उत्तर `underline(sqrt(3))` है।
व्याख्या:
यह देखते हुए: f(x) = `x + 1/x`, x ∈ [1, 3]
हम जानते हैं कि यदि f(x) = `x + 1/x`, x ∈ [1, 3] माध्य मान की सभी स्थिति को संतुष्ट करता है तो प्रमेय
f'(c) = `("f"("b") - "f"("a"))/("b" - "a")` जहाँ a = 1 और b = 3
⇒ `1 - 1/"c"^2 = ((3 + 1/3) - (1 + 1/1))/(3 - 1)`
⇒ `1 - 1/"c"^2 = (10/3 - 2)/2`
⇒ `1 - 1/"c"^2 = 4/6 = 2/3`
⇒ `- 1/"c"^2 = 2/3 - 1`
⇒ `- 1/"c"^2 = -1/3`
⇒ `1/"c"^2 = 1/3`
⇒ c = `+- sqrt(3)`.
यहाँ c = `sqrt(3) ∈ (1, 3)`
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
x = 1 पर f(x) = |x| + |x − 1|
`2^(cos^(2_x)`
(sin x)cosx
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
sec(x + y) = xy
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
[–1, 1] में f(x) = log(x2 + 2) – log3
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[1, 5] में f(x) = `sqrt(25 - x^2)`
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
फलन f(x) = `(4 - x^2)/(4x - x^3)`
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।