हिंदी

फलन f(x) = x+1x, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।

विकल्प

  • 1

  • `sqrt(3)`

  • 2

  • इनमें से कोई नहीं

MCQ

उत्तर

सही उत्तर `underline(sqrt(3))` है। 

व्याख्या:

यह देखते हुए: f(x) = `x + 1/x`, x ∈ [1, 3]

हम जानते हैं कि यदि f(x) =  `x + 1/x`, x ∈ [1, 3] माध्य मान की सभी स्थिति को संतुष्ट करता है तो प्रमेय

f'(c) = `("f"("b") - "f"("a"))/("b" - "a")` जहाँ a = 1 और b = 3

⇒ `1 - 1/"c"^2 = ((3 + 1/3) - (1 + 1/1))/(3 - 1)`

⇒ `1 - 1/"c"^2 = (10/3 - 2)/2`

⇒ `1 - 1/"c"^2 = 4/6 = 2/3`

⇒ `- 1/"c"^2 = 2/3 - 1`

⇒ `- 1/"c"^2 = -1/3`

⇒ `1/"c"^2 = 1/3`

⇒ c = `+- sqrt(3)`.

यहाँ c = `sqrt(3) ∈ (1, 3)`

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 95 | पृष्ठ ११३
एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 96 | पृष्ठ ११३

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।


फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


 फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि"  x ≠ 2),(5",", "यदिf"  x = 2):}` 


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 1 पर f(x) = |x| + |x − 1|


`2^(cos^(2_x)`


(sin x)cosx


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


sec(x + y) = xy


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


[–1, 1] में f(x) = log(x2 + 2) – log3 


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[1, 5] में f(x) = `sqrt(25 - x^2)` 


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


फलन f(x) = `(4 - x^2)/(4x - x^3)`


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×