Advertisements
Advertisements
प्रश्न
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
उत्तर
माना y = `tan^-1 [(3"a"^2x - x^3)/("a"^3 - 3"a"x^2)]`
x = a tan θ रखिये
∴ θ = `tan^-1 x/"a"`
y = `tan^-1 [(3"a"^2 * "a"tantheta - "a"^3 tan^3 theta)/("a"^3 - 3"a"*"a"^2 tan^2theta)]`
⇒ y = `tan^-1 [(3"a"^2 tantheta - "a"^3 tan^3theta)/("a"^3 - 3"a"^3 tan^2theta)]`
⇒ y = `tan^-1 [(3tan theta - tan^2ttheta)/(1 - 3tan^2 theta)]`
⇒ y = `tan^-1 [tan 3theta)]` .......`["क्योंकि" tan 3theta = (3tantheta - tan^2theta)/(1 - 3tan^2theta)]`
⇒ y = 3θ
⇒ y = `3tan^-1 x/"a"`
दोनों पक्षों को अलग करना w.r.t. x
`"dy"/"dx" = 3*"d"/"dx" (tan^-1 x/"a")`
= `3* 1/(1 + x^2/"a"^2) * "d"/"dx" * (x/"a")`
= `3 * "a"^2/("a"^2 + x^2) * 1/"a"`
= `(3"a")/("a"^2 + x^2)`
अत: `"dy"/"dx" = (3"a")/("a"^2 + x^2)`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
cos x के सापेक्ष sin x का अवकलज ______ है।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
`sin^-1 1/sqrt(x + 1)`
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
`sin xy + x/y` = x2 – y
tan–1(x2 + y2) = a
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[1, 4] में f(x) = `1/(4x - 1)`
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।