Advertisements
Advertisements
प्रश्न
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
उत्तर
माना y = `tan^-1 [(3"a"^2x - x^3)/("a"^3 - 3"a"x^2)]`
x = a tan θ रखिये
∴ θ = `tan^-1 x/"a"`
y = `tan^-1 [(3"a"^2 * "a"tantheta - "a"^3 tan^3 theta)/("a"^3 - 3"a"*"a"^2 tan^2theta)]`
⇒ y = `tan^-1 [(3"a"^2 tantheta - "a"^3 tan^3theta)/("a"^3 - 3"a"^3 tan^2theta)]`
⇒ y = `tan^-1 [(3tan theta - tan^2ttheta)/(1 - 3tan^2 theta)]`
⇒ y = `tan^-1 [tan 3theta)]` .......`["क्योंकि" tan 3theta = (3tantheta - tan^2theta)/(1 - 3tan^2theta)]`
⇒ y = 3θ
⇒ y = `3tan^-1 x/"a"`
दोनों पक्षों को अलग करना w.r.t. x
`"dy"/"dx" = 3*"d"/"dx" (tan^-1 x/"a")`
= `3* 1/(1 + x^2/"a"^2) * "d"/"dx" * (x/"a")`
= `3 * "a"^2/("a"^2 + x^2) * 1/"a"`
= `(3"a")/("a"^2 + x^2)`
अत: `"dy"/"dx" = (3"a")/("a"^2 + x^2)`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(log x)log x, x > 1
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
`8^x/x^8`
`log [log(logx^5)]`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
sec(x + y) = xy
[0, 1] में f(x) = x(x – 1)2
[0, π] में f(x) = sinx – sin2x
[1, 5] में f(x) = `sqrt(25 - x^2)`
माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
दो संतत फलनों का संयोजन एक संतत फलन होता है।