मराठी

X = 0 पर f(x) = ee,यदि,यदि{e1x1+e1x,यदि x≠00,यदि x=0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

 x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 

बेरीज

उत्तर

हमारे पास है, x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 

x = 0 पर

L.H.L. = `lim_(x -> 0^-) ("e"^(1/x))/(1 + "e"^(1/x))`

= `lim_("h" -> 0) ("e"^(1/(0 - "h")))/(1 + "e"^(1/(0 - "h"))`

= `lim_("h" -> 0) ("e"^(1/"h"))/(1 + "e"^(- 1/"h"))`

= `("e"^(- oo))/(1 + "e"^(- oo))`

= `0/(1 + 0)`

= 0

R.H.L. = `lim_(x -> 0^+) ("e"^(1/x))/(1 + "e"^(1/x))`

= `lim_("h" -> 0) ("e"^(1/(0 + "h")))/(1 + "e"^(1/(0 + "h"))`

= `lim_("h" -> 0) ("e"^(1/"h"))/(1 + "e"^(1/"h"))`

= `lim_("h" -> 0) 1/("e"^(-1/"h") + 1)`

= `1/("e"^(-oo) + 1)`

= `1/(0 + 1)`

= 1

इस प्रकार, L.H.L. ≠ R.H.L. x = 0 पर

अतः f(x) x = 0 पर असंतत है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 8 | पृष्ठ १०५

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


 यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`  से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।


x = 2 पर, f(x) = `{{:(1 + x",",  "यदि"  x ≤ 2),(5 - x",",  "यदि"  x > 2):}` 


`2^(cos^(2_x)`


sinmx . cosnx


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`


tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.


`sin xy + x/y` = x2 – y


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


[0, 1] में f(x) = x(x – 1)2


[0, π] में f(x) = sinx – sin2x 


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0


फलन f(x) = `(4 - x^2)/(4x - x^3)`


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×