Advertisements
Advertisements
प्रश्न
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
उत्तर
माना y = tan–1(sec x + tan x)
दोनों पक्षों में अंतर करना w.r.t. x
`"dy"/"dx" = "d"/"dx" [tan^-1 (secx + tanx)]`
= `1/(1 + (secx + tanx)^2) * "d"/"dx"(secx + tanx)`
= `1/(1 + sec^2 + tan^2x + 2 sec x tanx) * (secx tanx + sec^2x)`
= `1/((1 + tan^2x) + sec^2x + 2secx tanx) * secx(tanx + secx)`
= `1/(sec^2x + sec^2x + 2secx tanx) * secx(tanx + secx)`
= `1/(2sec^2x + 2secx tanx) * secx(tanx + secx)`
= `1/(2secx(secx + tanx)) * secx(tanx + secx)`
= `1/2`
अत: `"dy"/"dx" = 1/2`
दूसरा तरीका:
मान लीजिए y = `tan^-1 (secx + tanx), (-pi)/2 < x < pi/2`
= `tan^-1 (1/cosx + sinx/cosx)`
= `tan^-1 ((1 + sinx)/cosx)`
= `tan^-1 [(cos^2 x/2 + sin^2 x/2 + 2sin x/2 cos x/2)/(cos^2 x/2 - sin^2 x/2)]` ......`[("क्योंकि" 2x = 2sinx cosx),(cos2x = cos^2x - sin^2x)]`
= `tan^-1 [(cos x/2 + sin x/2)^2/((cos x/2 + sin x/2)(cos x/2 - sin x/2))]`
= `tan^-1 [(cos x/2 + sin x/2)/(cos x/2 - sin x/2)]`
= `tan^-1 [(1 + tan x/2)/(1 - tan x/2)]` .....[Nr. को विभाजित करना और Den. द्वारा cos `x/2`]
= `tan^-1 [(tan pi/4 + tan x/2),(1 - tan pi/4 * tan x/2)]`
= `tan^-1 [tan (pi/4 + x/2)]`
∴ y = `pi/4 + x/2`
दोनों पक्षों में अंतर करना w.r.t. x
`"dy"/"dx" = 1/2 "d"/"dx" (x)`
= `1/2 * 1`
= `1/2`
इसलिए, `"dy"/"dx" = 1/2`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
cos x के सापेक्ष sin x का अवकलज ______ है।
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
sinn (ax2 + bx + c)
sinx2 + sin2x + sin2(x2)
`sin^-1 1/sqrt(x + 1)`
sinmx . cosnx
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
(x2 + y2)2 = xy
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[0, π] में f(x) = sinx – sin2x
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
फलन f(x) = `"e"^|x|`
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
दो संतत फलनों का संयोजन एक संतत फलन होता है।