मराठी

Tan-1(secx+tanx),-π2<x<π2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`tan^-1 (secx + tanx), - pi/2 < x < pi/2`

बेरीज

उत्तर

माना y = tan–1(sec x + tan x)

दोनों पक्षों में अंतर करना w.r.t. x

`"dy"/"dx" = "d"/"dx" [tan^-1 (secx + tanx)]`

= `1/(1 + (secx + tanx)^2) * "d"/"dx"(secx + tanx)`

= `1/(1 + sec^2 + tan^2x + 2 sec  x tanx) * (secx tanx + sec^2x)`

= `1/((1 + tan^2x) + sec^2x + 2secx tanx) * secx(tanx + secx)`

= `1/(sec^2x + sec^2x + 2secx tanx) * secx(tanx + secx)`

= `1/(2sec^2x + 2secx tanx) * secx(tanx + secx)`

= `1/(2secx(secx + tanx)) * secx(tanx + secx)`

= `1/2`

अत: `"dy"/"dx" = 1/2`

दूसरा तरीका:

मान लीजिए y = `tan^-1 (secx + tanx), (-pi)/2 < x < pi/2`

= `tan^-1 (1/cosx + sinx/cosx)`

= `tan^-1 ((1 + sinx)/cosx)`

= `tan^-1 [(cos^2  x/2 + sin^2  x/2 + 2sin  x/2 cos  x/2)/(cos^2  x/2 - sin^2  x/2)]`  ......`[("क्योंकि"  2x = 2sinx cosx),(cos2x = cos^2x - sin^2x)]` 

= `tan^-1 [(cos  x/2 + sin  x/2)^2/((cos  x/2 + sin  x/2)(cos  x/2 - sin  x/2))]`

= `tan^-1 [(cos  x/2 + sin  x/2)/(cos  x/2 - sin  x/2)]`

= `tan^-1  [(1 + tan  x/2)/(1 - tan  x/2)]`  .....[Nr. को विभाजित करना और Den. द्वारा cos  `x/2`]

= `tan^-1  [(tan  pi/4 + tan  x/2),(1 - tan  pi/4 * tan  x/2)]`

= `tan^-1 [tan (pi/4 + x/2)]`

∴ y = `pi/4 + x/2`

दोनों पक्षों में अंतर करना w.r.t. x

`"dy"/"dx" = 1/2  "d"/"dx" (x)`

= `1/2 * 1`

= `1/2`

इसलिए, `"dy"/"dx" = 1/2`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 39 | पृष्ठ १०७

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


 cos x के सापेक्ष sin x का अवकलज ______ है।


x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि"  x ≠ 2),(5",", "यदिf"  x = 2):}` 


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


sinn (ax2 + bx + c)


sinx2 + sin2x + sin2(x2)


`sin^-1  1/sqrt(x + 1)`


sinmx . cosnx


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


(x2 + y2)2 = xy


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[0, π] में f(x) = sinx – sin2x 


[1, 5] में f(x) = `sqrt(25 - x^2)` 


यदि  f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?


फलन f(x) = `"e"^|x|` 


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


दो संतत फलनों का संयोजन एक संतत फलन होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×