Advertisements
Advertisements
प्रश्न
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
उत्तर
माना y = tan–1(sec x + tan x)
दोनों पक्षों में अंतर करना w.r.t. x
`"dy"/"dx" = "d"/"dx" [tan^-1 (secx + tanx)]`
= `1/(1 + (secx + tanx)^2) * "d"/"dx"(secx + tanx)`
= `1/(1 + sec^2 + tan^2x + 2 sec x tanx) * (secx tanx + sec^2x)`
= `1/((1 + tan^2x) + sec^2x + 2secx tanx) * secx(tanx + secx)`
= `1/(sec^2x + sec^2x + 2secx tanx) * secx(tanx + secx)`
= `1/(2sec^2x + 2secx tanx) * secx(tanx + secx)`
= `1/(2secx(secx + tanx)) * secx(tanx + secx)`
= `1/2`
अत: `"dy"/"dx" = 1/2`
दूसरा तरीका:
मान लीजिए y = `tan^-1 (secx + tanx), (-pi)/2 < x < pi/2`
= `tan^-1 (1/cosx + sinx/cosx)`
= `tan^-1 ((1 + sinx)/cosx)`
= `tan^-1 [(cos^2 x/2 + sin^2 x/2 + 2sin x/2 cos x/2)/(cos^2 x/2 - sin^2 x/2)]` ......`[("क्योंकि" 2x = 2sinx cosx),(cos2x = cos^2x - sin^2x)]`
= `tan^-1 [(cos x/2 + sin x/2)^2/((cos x/2 + sin x/2)(cos x/2 - sin x/2))]`
= `tan^-1 [(cos x/2 + sin x/2)/(cos x/2 - sin x/2)]`
= `tan^-1 [(1 + tan x/2)/(1 - tan x/2)]` .....[Nr. को विभाजित करना और Den. द्वारा cos `x/2`]
= `tan^-1 [(tan pi/4 + tan x/2),(1 - tan pi/4 * tan x/2)]`
= `tan^-1 [tan (pi/4 + x/2)]`
∴ y = `pi/4 + x/2`
दोनों पक्षों में अंतर करना w.r.t. x
`"dy"/"dx" = 1/2 "d"/"dx" (x)`
= `1/2 * 1`
= `1/2`
इसलिए, `"dy"/"dx" = 1/2`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
मान लीजिए कि f(x)= |cosx| है।जब,
फलन f(x) = |x| + |x – 1|
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
x = 1 पर f(x) = |x| + |x − 1|
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[1, 4] में f(x) = `1/(4x - 1)`
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
फलन f(x) = `(4 - x^2)/(4x - x^3)`
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
दो संतत फलनों का संयोजन एक संतत फलन होता है।