हिंदी

X = 0 पर f(x) = kk,यदि,यदि{1+kx-1-kxx, यदि-1≤x<02x+1x-1, यदि 0≤x≤1 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "यदि"  0 ≤ x ≤ 1):}` 

योग

उत्तर

हमारे पास f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "यदि"  0 ≤ x ≤ 1):}`

L.H.L. = `lim_(x -> 0^-) (sqrt(1 + "k"x) - sqrt(1 - "k"x))/x`

= `lim_(x -> 0^-) ((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x) * ((sqrt(1 + "k"x) + sqrt(1 - "k"x))/(sqrt(1 + "k"x) + sqrt(1 - "k"x)))`

= `lim_(x -> 0^-) (1 + "k"x - 1 + "k"x)/(x[sqrt(1 + "k"x) + sqrt(1 + "k"x)])`

= `lim_("h" -> 0) (2"k")/(x[sqrt(1 + "k"(0 - "h")) + sqrt(1 - "k"(0 - "h")]`

= `lim_("h" -> 0) (2"k")/(sqrt(1 - "kh") + sqrt(1 + "kh")`

= `(2"k")/2`

= k

R.H.L. = `lim_(x -> 0^+) (2x + 1)/(x - 1)`

= `lim_("h" -> 0) (2(0 + "h") + 1)/((0 + "h") - 1)`

= `lim_("h" -> 0) (2"h" + 1)/("h" - 1)`

= – 1

साथ ही f(0) = `(2 xx 0 + 1)/(0 - 1)` = – 1

हमारे पास L.H.L. = R.H.L. = f(0) होना चाहिए।

⇒ k = – 1

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 13 | पृष्ठ १०६

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


 फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है


 cos x के सापेक्ष sin x का अवकलज ______ है।


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`  से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`2^(cos^(2_x)`


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


`sin sqrt(x) + cos^2 sqrt(x)`


sinmx . cosnx


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


tan–1(x2 + y2) = a


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


[– 2, 2] में f(x) = `sqrt(4 - x^2)` 


रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[0, π] में f(x) = sinx – sin2x 


यदि f(x) = `x^2 sin  1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×