Advertisements
Advertisements
प्रश्न
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
उत्तर
हमारे पास है, `sqrt(4 - x^2) = (4 - x^2)^(1/2)`
क्योंकि (4 – x2) और वर्गमूल फलन अपने क्षेत्र में संतत और अवकलनीय हैं, दिया गया फलन f(x) भी [-2, 2] में संतत और अवकलनीय है।
साथ ही f(–2) = f(2) = 0
अतः रोले के प्रमेय की शर्तें संतुष्ट हैं।
अत: एक वास्तविक संख्या c ∈ (–2, 2) का अस्तित्व इस प्रकार है कि f'(c) = 0 है।
अब f'(x) = `1/2(4 - x^2)^((-1)/2)(-2x)`
= `- x/sqrt(4 - x^2)`
तो, f'(c) = 0
⇒ `"c"/sqrt(4 - "c"^2)` = 0
⇒ c = 0 ∈ (–2, 2)
अत: रोले की प्रमेय है।
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
फलन f(x) = |x| + |x – 1|
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`8^x/x^8`
sinn (ax2 + bx + c)
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[1, 4] में f(x) = `1/(4x - 1)`
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______