हिंदी

यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि dydxdydxp(1-x2)d2ydx2-xdydx+p2y = 0 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।

योग

उत्तर

दिया गया है कि: x = sin t और y = sin pt

दोनों प्राचलिक फलनों को अलग करना w.r.t. t

`"dx"/"dt"` = cos t and `"dy"/"dt"` = cos pt. p = p cos pt

`"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `("p" cos "pt")/cos "t"`

∴ `"dy"/"dx" = ("p" cos "pt")/cos"t"`

फिर से अंतर करना w.r.t. x,

`"d"/"dx"("dy"/"dx") = "p"*"d"/"dx"(cos"pt"/cos"t")`

⇒ `("d"^2y)/("dx"^2) = "p"[(cos "t" * "d"/"dx" (cos "pt") - cos "pt" * "d"/"dx" (cos "t"))/(cos^2"t")]`

= `"p"[(cos"t"(- sin "pt") * "p" "dt"/"dx" - cos "pt"(- sin "t") * "dt"/"dx")/(cos^2"t")]`

= `"p"[(-"p" cos "t" sin "pt" + cos "pt" sin "t")/(cos^2"t")]"dt"/"dx"`

= `"p"[(-"p" cos "t" sin "pt" + cos "pt" sin "t")/(cos^2"t")]* 1/cos"t"`

= `"p"[(-"p" cos "t" sin "pt" + cos "pt" sin "t")/cos^3"t"]`

अब हमें यह साबित करना है कि

`(1 - x^2) * ("d"^2y)/("dx"^2) - x * "dy"/"dx" + "p"^2y` = 0

L.H.S. = `(1 - x^2) ["p"((-"p" cos "t" sin "pt" + cos "pt" sin "t")/cos^3"t")] - x."p" (cos "pt")/cos"t" + "p"^2y`

⇒ `(1 - sin^2"t") ["p"((-"p" cos "t" sin "pt" + cos "pt" sin "t")/cos^3"t")] - ("p" sin "t" * cos "pt")/cos"t" + "p"^2 * sin "pt"`

⇒ `cos^2"t" [(-"p"^2 cos "t" sin "pt" + cos "pt" sin "t")/(cos^3"t")] - ("p" sin "t" * cos "pt")/cos"t" + "p"^2 * sin "pt"`

⇒ `(-"p"^2 cos "t" sin "pt" + "p" cos "pt" sin "t")/cos "t" - ("p" sin "t" cos "pt")/cos"t" + "p"^2 sin "pt"`

⇒ `(-"p"^2 cos "t" sin "pt" + "p" cos "pt" sin "t" - "p" sin "t" cos "pt" + "p"^2 sin "pt" cos "t")/cos "t"`

⇒ `0/cos"t"` = 0 = R.H.S.

इसलिए साबित हुआ।

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 81 | पृष्ठ ११०

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


sinn (ax2 + bx + c)


`sin^-1  1/sqrt(x + 1)`


(sin x)cosx


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


[0, 1] में f(x) = x(x – 1)2


[–1, 1] में f(x) = log(x2 + 2) – log3 


p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}` बिंदु x = 1 पर अवकलनीय हो।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


यदि  f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?


फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×