हिंदी

Sinn (ax2 + bx + c) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

sinn (ax2 + bx + c)

योग

उत्तर

माना y = sinn (ax2 + bx + c)

दोनों पक्षों में अंतर करना w.r.t. x

`"dy"/"dx" = "d"/"dx" sin^"n" ("a"x^2 + "b"x + "c")`

= `"n" * sin^("n" - 1) ("a"x^2 + "b"x + "c") * "d"/"dx" sin("a"x^2 + "b"x + "c")`

= `"n" * sin^("n" - 1) ("a"x^2 + "b"x + "c") * cos("a"x^2 + "b"x + "c") * "d"/"dx" ("a"x^2 + "b"x + "c")`

= `"n" * sin^("n" - 1) ("a"x^2 + "b"x + "c") * cos("a"x^2 + "b"x + "c") * (2"a"x + "b")`

इसलिए, `"dy"/"dx" = "n"  (2"a"x + "b") * sin^("n" - 1)("a"x^2 + "b"x + "c")*cos("a"x^2 + "b"x + "c")`

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 30 | पृष्ठ १०७

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि"  x ≠ 0),(5",", "यदि"  x = 0):}` 


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


 x = a पर  f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "यदि"  x ≠ 0),(0",",  "यदि"  x = "a"):}` 


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


(sin x)cosx


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


`[0, pi/2]` esa f(x) = `sin^4x + cos^4x` 


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×