Advertisements
Advertisements
प्रश्न
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
उत्तर
दिया गया है: `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`
x = sin θ और y = sin Φ रखें।
∴ θ = sin–1x और Φ = sin–1y
`sqrt(1 - sin^2theta) + sqrt(1 - sin^2phi)` = a(sin θ – sin Φ)
⇒ `sqrt(cos^2theta) + sqrt(cos^2phi)` = a(sin θ – sin Φ)
⇒ cos θ + cos Φ = a(sin θ – sin Φ)
⇒ `(cos theta + cos phi)/(sin theta - sin phi)` = a
⇒ `(2 cos (theta + phi)/2 * cos (theta - phi)/2)/(2cos (theta + phi)/2 * sin (theta - phi)/2)` = a ......`[("क्योंकि" cos "A" + cos "B" = 2cos ("A" + "B")/2 * cos ("A" - "B")/2),(sin"A" - sin"B" = 2cos ("A" + "B")/2 * sin ("A" - "B")/2)]`
⇒ `(cos((theta - phi)/2))/(sin((theta - phi)/2))` = a
⇒ `cot((theta - phi)/2)` = a
⇒ `(theta - phi)/2 = cot^-1"a"`
⇒ θ – Φ = 2cot–1a
⇒ sin–1x – sin–1y = 2 cot–1a
दोनों पक्षों में अंतर करना w.r.t. x
`"d"/"dx" (sin^-1x) - "d"/"dx"(sin^-1x) = 2*"d"/"dx" cot^-1"a"`
⇒ `1/sqrt(1 - x^2) - 1/sqrt(1 - y^2) * "dy"/"dx"` = 0
⇒ `1/sqrt(1 - y^2) * "dy"/"dx" = 1/sqrt(1 - x^2)`
∴ `"dy"/"dx" = sqrt(1 - y^2)/sqrt(1 - x^2)`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
निम्नलिखित का सुमेलन कीजिए-
स्तंभ-I | स्तंभ-II |
(A) यदि फलन f(x) = `{((sin3x)/x, "यदि फलन" x = 0),("k"/2",", "यदि फलन" x = 0):}` x = 0 पर संतत है, तो k बराबर है |
(a) |x| |
(B) प्रत्येक संतत फलन अवकलनीय होता हैं | (b) सत्य |
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है | (c) 6 |
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R एक संतत फलन है |
(d) असत्य |
y = |x – 1| एक संतत फलन है।
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
(sin x)cosx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
`sin xy + x/y` = x2 – y
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
[0, π] में f(x) = sinx – sin2x
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
फलन f(x) = `"e"^|x|`
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।