Advertisements
Advertisements
प्रश्न
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
उत्तर
दिया गया है: x = `"e"^(x/y)`
दोनों तरफ से log लेते हुए,
log x = `log "e"^(x/y)`
⇒ log x = `x/y log "e"`
⇒ log x = `x/y` ....[∵ log e = 1] ....(i)
दोनों पक्षों में अंतर करना w.r.t. x
`"d"/"dx" log x = "d"/"dx"(x/y)`
⇒ `1/x = (y*1 - x* "dy"/"dx")/y^2`
⇒ y2 = `xy - x^2 * "dy"/"dx"`
⇒ `x^2 * "dy"/"dx"` = xy – y2
⇒ `"dy"/"dx" = (y(x - y))/x^2`
⇒ `"dy"/"d" = y/x * ((x - y)/x)`
⇒ `"dy"/"dx" = 1/logx * ((x - y)/x)` .....[∵ log x = `x/y` from समीकरण (i) से]
इसलिए, `"dy"/"dx" = (x - y)/(xlogx)
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
मान लीजिए कि f(x)= |cosx| है।जब,
फलन f(x) = |x| + |x – 1|
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
x = 0 पर f(x) = `{{:(|x|cos 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
`log (x + sqrt(x^2 + "a"))`
sinn (ax2 + bx + c)
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
`sin xy + x/y` = x2 – y
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[0, π] में f(x) = sinx – sin2x
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।
[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।