हिंदी

X = 2 पर f(x) = ,यदि,यदि{3x+5,यदि x≥2x2,यदि x<2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

 x = 2 पर f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` 

योग

उत्तर

हमारे पास, f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` x = 2 पर है।

x = 2 पर

R.H.L. = `lim_(x -> 2^+) (3x + 5)`

= `lim_("h" -> 0) [3(2 + "h") + 5]` = 11

और L.H.L. = `lim_(x -> 2^-) x^2`

= `lim_("h" -> 0) (2 - "h")^2` = 4

क्योंकि, L.H.L. ≠ R.H.L. x = 2 पर

अत: f(x) x = 2 पर असंतत है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 2 | पृष्ठ १०४

संबंधित प्रश्न

f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


x = 1 पर f(x) = |x| + |x − 1|


x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


(sin x)cosx


(x + 1)2(x + 2)3(x + 3)4


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


`sin xy + x/y` = x2 – y


sec(x + y) = xy


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[0, π] में f(x) = sinx – sin2x 


फलन f(x) = `(4 - x^2)/(4x - x^3)`


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______


दो संतत फलनों का संयोजन एक संतत फलन होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×