Advertisements
Advertisements
प्रश्न
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
उत्तर
हमारे पास, f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}` x = 2 पर है।
x = 2 पर
R.H.L. = `lim_(x -> 2^+) (3x + 5)`
= `lim_("h" -> 0) [3(2 + "h") + 5]` = 11
और L.H.L. = `lim_(x -> 2^-) x^2`
= `lim_("h" -> 0) (2 - "h")^2` = 4
क्योंकि, L.H.L. ≠ R.H.L. x = 2 पर
अत: f(x) x = 2 पर असंतत है।
APPEARS IN
संबंधित प्रश्न
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
x = 1 पर f(x) = |x| + |x − 1|
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
(sin x)cosx
(x + 1)2(x + 2)3(x + 3)4
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
`sin xy + x/y` = x2 – y
sec(x + y) = xy
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[0, π] में f(x) = sinx – sin2x
फलन f(x) = `(4 - x^2)/(4x - x^3)`
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______
दो संतत फलनों का संयोजन एक संतत फलन होता है।