हिंदी

X = 1 पर f(x) = |x| + |x − 1| - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = 1 पर f(x) = |x| + |x − 1|

योग

उत्तर

हमारे पास, x = 1 पर f(x) = |x| + |x − 1| 

x = 1 पर

L.H.L. = `lim_(x -> 1^-) [|x| + |x - 1|]`

= `lim_("h" -? 0^-) [|1 - "h"| + |1 - "h" - 1|]`

= 1 + 0

= 1

और R.H.L. = `lim_(x ->^+) [|x| + x - 1|]`

= `lim_("h" -> 0) [|1 + "h"| + |1 + "h" - 1|]`

= 1 + 0

= 1

साथ ही f(1) = |1| + |0| = 1

इस प्रकार, L.H.L. = R.H.L = f(1)

अत: f(x) x = 1 पर संतत है। 

वैकल्पिक तरीका:

क्योंकि सभी वास्तविक x के लिए प्रत्येक मापांक फलन संतत होता है। 

|x| और |x – 1| सभी वास्तविक x के लिए संतत हैं। 

तो, |x| + |x – 1| सभी वास्तविक x के लिए संतत है और इसलिए x = 0 पर।

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 10 | पृष्ठ १०५

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


 cos x के सापेक्ष sin x का अवकलज ______ है।


 x = 2 पर f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


x = 2 पर, f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`8^x/x^8`


(sin x)cosx


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


[– 2, 2] में f(x) = `sqrt(4 - x^2)` 


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}` बिंदु x = 1 पर अवकलनीय हो।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×