मराठी

X = 1 पर f(x) = |x| + |x − 1| - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = 1 पर f(x) = |x| + |x − 1|

बेरीज

उत्तर

हमारे पास, x = 1 पर f(x) = |x| + |x − 1| 

x = 1 पर

L.H.L. = `lim_(x -> 1^-) [|x| + |x - 1|]`

= `lim_("h" -? 0^-) [|1 - "h"| + |1 - "h" - 1|]`

= 1 + 0

= 1

और R.H.L. = `lim_(x ->^+) [|x| + x - 1|]`

= `lim_("h" -> 0) [|1 + "h"| + |1 + "h" - 1|]`

= 1 + 0

= 1

साथ ही f(1) = |1| + |0| = 1

इस प्रकार, L.H.L. = R.H.L = f(1)

अत: f(x) x = 1 पर संतत है। 

वैकल्पिक तरीका:

क्योंकि सभी वास्तविक x के लिए प्रत्येक मापांक फलन संतत होता है। 

|x| और |x – 1| सभी वास्तविक x के लिए संतत हैं। 

तो, |x| + |x – 1| सभी वास्तविक x के लिए संतत है और इसलिए x = 0 पर।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 10 | पृष्ठ १०५

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


फलन f(x) = |x| + |x – 1|


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`log [log(logx^5)]`


sinmx . cosnx


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।


रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[0, 1] में f(x) = x3 – 2x2 – x + 3 


[1, 5] में f(x) = `sqrt(25 - x^2)` 


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।


x3 के सापेक्ष  x2 अवकलज ______ है।


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×