मराठी

फलन f(x) = |x| + |x – 1| - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

फलन f(x) = |x| + |x – 1|

पर्याय

  • x = 0 तथा x = 1 दोनों पर संतत है।

  • x = 1 पर संतत है, परंतु x = 0 पर संतत नहीं है।

  • x = 0 तथा x = 1  दोनों पर असंतत है।

  • x = 0 पर संतत है, परंतु x = 1 पर संतत नहीं है।

MCQ

उत्तर

सही उत्तर x = 0 तथा x = 1 दोनों पर संतत है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - हल उदाहरण [पृष्ठ १०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
हल उदाहरण | Q 29 | पृष्ठ १०२

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


 x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 


a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "यदि"  x < 4),("a" + "b"",",  "यदि"  x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि"  x > 4):}`

बिंदु x = 4 पर संतत है।


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


sinx2 + sin2x + sin2(x2)


`sin^-1  1/sqrt(x + 1)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


[0, 1] में f(x) = x(x – 1)2


`[0, pi/2]` esa f(x) = `sin^4x + cos^4x` 


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


 यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×