Advertisements
Advertisements
प्रश्न
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
उत्तर
दिया गया है कि: ecos2t और y = esin2t
⇒ cos 2t = log x और sin 2t = log y.
दोनों प्राचलिक फलनों को अलग करना w.r.t. t
`"dx"/"dt" = "e"^(cos2"t") * "d"/"dt" (cos 2"t")`
= `"e"^(cos 2"t") (- sin 2"t") * "d"/"dt" (2"t")`
= `- "e"^(cos2"t") * sin 2"t" * 2`
= `2"e"^(cos2"t") * sin 2"t"`
अब y = esin2t
`"dy"/"dt" = "e"^(sin2"t") * "d"/"dt"(sin 2"t")`
= `"e"^(sin2"t") * cos 2"t" * "d"/"dt"(2"t")`
= `"e"^(sin2"t") * cos 2"t" * 2`
= `2"e"^(sin2"t") * cos 2"t"`
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
= `(2"e"^(sin2"t") * cos2"t")/(-2"e"^(cos2"t") * sin 2"t")`
= `("e"^(sin2"t") * cos2"t")/(-"e"^(cos2"t") * sin2"t")`
= `(y cos 2"t")/(-x sin 2"t")`
= `(y log x)/(-x log y)` ......`[("क्योंकि" cos 2"t" = log x),(sin 2"t" = log y)]`
इसलिए, `"dy"/"dx" = - (y log x)/(x log y)`.
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
x = 0 पर f(x) = `{{:(|x|cos 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
sinn (ax2 + bx + c)
sinx2 + sin2x + sin2(x2)
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
`sin xy + x/y` = x2 – y
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
फलन f(x) = `(4 - x^2)/(4x - x^3)`
फलन f(x) = `"e"^|x|`
मान लीजिए f(x) = |sin x| है, तब
दो संतत फलनों का संयोजन एक संतत फलन होता है।