मराठी

यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि dydxdydx=-ylogxxlogy है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।

बेरीज

उत्तर

दिया गया है कि: ecos2t और y = esin2t

⇒ cos 2t = log x और sin 2t = log y.

दोनों प्राचलिक फलनों को अलग करना w.r.t. t

`"dx"/"dt" = "e"^(cos2"t") * "d"/"dt" (cos 2"t")`

= `"e"^(cos 2"t") (- sin 2"t") * "d"/"dt" (2"t")`

= `- "e"^(cos2"t") * sin 2"t" * 2`

= `2"e"^(cos2"t") * sin 2"t"`

अब y = esin2t

`"dy"/"dt" = "e"^(sin2"t") * "d"/"dt"(sin 2"t")`

= `"e"^(sin2"t") * cos 2"t" * "d"/"dt"(2"t")`

= `"e"^(sin2"t") * cos 2"t" * 2`

= `2"e"^(sin2"t") * cos 2"t"`

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(2"e"^(sin2"t") * cos2"t")/(-2"e"^(cos2"t") * sin 2"t")`

= `("e"^(sin2"t") * cos2"t")/(-"e"^(cos2"t") * sin2"t")`

= `(y cos 2"t")/(-x sin 2"t")`

= `(y log x)/(-x log y)`   ......`[("क्योंकि" cos 2"t" = log x),(sin 2"t" = log y)]`

इसलिए, `"dy"/"dx" = - (y log x)/(x log y)`.

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 49 | पृष्ठ १०८

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि"  x ≠ 2),(5",", "यदिf"  x = 2):}` 


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "यदि"  0 ≤ x ≤ 1):}` 


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।


sinn (ax2 + bx + c)


sinx2 + sin2x + sin2(x2)


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


`sin xy + x/y` = x2 – y


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


फलन f(x) = `(4 - x^2)/(4x - x^3)`


फलन f(x) = `"e"^|x|` 


मान लीजिए f(x) = |sin x| है, तब


दो संतत फलनों का संयोजन एक संतत फलन होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×