मराठी

X = 2 पर (x) = ,यदि,यदिf{2x2-3x-2x-2,यदि x≠25,यदिf x=2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि"  x ≠ 2),(5",", "यदिf"  x = 2):}` 

बेरीज

उत्तर

हमारे पास है, f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदिf"  x ≠ 2),(5",", "यदि"  x = 2):}` x = 2 पर

x = 2 पर

L.H.L. = `lim_(x -> 2^-) (2x^2 - 3x - 2)/(x - 2)`

= `lim_("h" -> 0) (2(2 - "h")^2 - 3(2 - "h") - 2)/((2 - "h") - 2)`

= `lim_("h" -> 0) (8 + 2"h"^2 - 8"h" - 6 + 3"h" - 2)/(-"h")`

= `lim_("h" -> 0) (2"h"^2 - 5"h")/(-"h")`

= `lim_("h" -> 0) ("h"(2"h" - 5))/(-"h")` = 5

R.H.L. = `lim_(x -> 2^+) (2x^2 - 3x - 2)/(x - 2)`

= `lim_("h" -> 0) (2(2 + "h")^2 - 3(2 + "h") - 2)/((2 + "h") - 2)`

= `lim_("h" -> 0) (8 + 2"h"^2 + 8"h" - 6 - 3"h" - 2)/"h"`

= `lim_("h" -> 0) (2"h"^2 + 5"h")/"h"`

= `lim_("h" -> 0) ("h"(2"h" + 5))/"h"` = 5

साथ ही f(2) = 5  ....(दिया है)

∴ L.H.L. = R.H.L. = f(2)

अतः f(x) x = 2 पर संतत है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 4 | पृष्ठ १०५

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि"  x ≠ 0),(5",", "यदि"  x = 0):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "यदि"  x < 4),("a" + "b"",",  "यदि"  x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि"  x > 4):}`

बिंदु x = 4 पर संतत है।


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


`log [log(logx^5)]`


sinx2 + sin2x + sin2(x2)


sinmx . cosnx


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


[0, 1] में f(x) = x(x – 1)2


[0, 1] में f(x) = x3 – 2x2 – x + 3 


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


दो संतत फलनों का संयोजन एक संतत फलन होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×