मराठी

[0, 1] में f(x) = x3 – 2x2 – x + 3 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

[0, 1] में f(x) = x3 – 2x2 – x + 3 

बेरीज

उत्तर

हमारे पास, [0, 1] में f(x) = x3 – 2x2 – x + 3 है।

क्योंकि, f(x) एक बहुपद फलन है, यह [0, 1] में संतत है और (0, 1) में अवकलनीय है।

इस प्रकार, माध्य मान प्रमेय की शर्तें संतुष्ट होती हैं।

इसलिए, एक वास्तविक संख्या c ∈ (0, 1) मौजूद है जैसे कि

f'(c) = `("f"(1) - "f"(0))/(1 - 0)`

⇒ 3c2 – 4c – 1 = `([1 - 2 - 1 + 3] - [0 + 3])/(1 - 0)`

⇒ 3c2 – 4c – 1 = –2

⇒ 3c2 – 4c + 1 = 0

⇒ (3c – 1)(c – 1) = 0

⇒ c = `1/3 ∈ (0, 1)`

इसलिए, माध्य मान प्रमेय को सत्यापित किया गया है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 74 | पृष्ठ ११०

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


फलन f(x) = |x| + |x – 1|


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


`8^x/x^8`


`sin^-1  1/sqrt(x + 1)`


(sin x)cosx


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


(x2 + y2)2 = xy


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[1, 5] में f(x) = `sqrt(25 - x^2)` 


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


x3 के सापेक्ष  x2 अवकलज ______ है।


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×