Advertisements
Advertisements
प्रश्न
[0, 1] में f(x) = x3 – 2x2 – x + 3
उत्तर
हमारे पास, [0, 1] में f(x) = x3 – 2x2 – x + 3 है।
क्योंकि, f(x) एक बहुपद फलन है, यह [0, 1] में संतत है और (0, 1) में अवकलनीय है।
इस प्रकार, माध्य मान प्रमेय की शर्तें संतुष्ट होती हैं।
इसलिए, एक वास्तविक संख्या c ∈ (0, 1) मौजूद है जैसे कि
f'(c) = `("f"(1) - "f"(0))/(1 - 0)`
⇒ 3c2 – 4c – 1 = `([1 - 2 - 1 + 3] - [0 + 3])/(1 - 0)`
⇒ 3c2 – 4c – 1 = –2
⇒ 3c2 – 4c + 1 = 0
⇒ (3c – 1)(c – 1) = 0
⇒ c = `1/3 ∈ (0, 1)`
इसलिए, माध्य मान प्रमेय को सत्यापित किया गया है।
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
फलन f(x) = |x| + |x – 1|
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
`8^x/x^8`
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
(x2 + y2)2 = xy
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
x3 के सापेक्ष x2 अवकलज ______ है।
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।