Advertisements
Advertisements
प्रश्न
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
उत्तर
दिया गया है: `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`
x = sin θ और y = sin Φ रखें।
∴ θ = sin–1x और Φ = sin–1y
`sqrt(1 - sin^2theta) + sqrt(1 - sin^2phi)` = a(sin θ – sin Φ)
⇒ `sqrt(cos^2theta) + sqrt(cos^2phi)` = a(sin θ – sin Φ)
⇒ cos θ + cos Φ = a(sin θ – sin Φ)
⇒ `(cos theta + cos phi)/(sin theta - sin phi)` = a
⇒ `(2 cos (theta + phi)/2 * cos (theta - phi)/2)/(2cos (theta + phi)/2 * sin (theta - phi)/2)` = a ......`[("क्योंकि" cos "A" + cos "B" = 2cos ("A" + "B")/2 * cos ("A" - "B")/2),(sin"A" - sin"B" = 2cos ("A" + "B")/2 * sin ("A" - "B")/2)]`
⇒ `(cos((theta - phi)/2))/(sin((theta - phi)/2))` = a
⇒ `cot((theta - phi)/2)` = a
⇒ `(theta - phi)/2 = cot^-1"a"`
⇒ θ – Φ = 2cot–1a
⇒ sin–1x – sin–1y = 2 cot–1a
दोनों पक्षों में अंतर करना w.r.t. x
`"d"/"dx" (sin^-1x) - "d"/"dx"(sin^-1x) = 2*"d"/"dx" cot^-1"a"`
⇒ `1/sqrt(1 - x^2) - 1/sqrt(1 - y^2) * "dy"/"dx"` = 0
⇒ `1/sqrt(1 - y^2) * "dy"/"dx" = 1/sqrt(1 - x^2)`
∴ `"dy"/"dx" = sqrt(1 - y^2)/sqrt(1 - x^2)`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
x = a पर f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "यदि" x ≠ 0),(0",", "यदि" x = "a"):}`
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
sec(x + y) = xy
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[–1, 1] में f(x) = log(x2 + 2) – log3
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।