मराठी

Sinx के सापेक्ष xsinxको अवकलित कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।

बेरीज

उत्तर

मान लीजिए y = `x/sinx` और z = sin x.

दोनों प्राचलिक फलनों को अलग करना w.r.t. x

`"dy"/"dx" = (sin x * "d"/"dx" (x) - x * "d"/"dx" (sin x))/(sin x)^2`

= `(sin x * 1 - x * cos x)/(sin^2x)`

= `(sinx - x cos x)/(sin^2x)`

`"dz"/"dx"` = cos x

∴ `"dy"/"dz" = ("dy"/"dx")/("dz"/"dx")`

= `((sinx - x cos x)/sin^2x)/cosx`

= `(sinx - xcosx)/(sin^2x cos x)`

= `sinx/(sin^2x cosx) - (xcosx)/(sin^2x cosx)`

= `tanx/(sin^2x) - x/(sin^2x)`

= `(tanx - x)/(sin^2x)`

इसलिए, `"dy"/"dz" = (tanx - x)/(sin^2x)`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 52 | पृष्ठ १०८

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।


फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


y = |x – 1| एक संतत फलन है।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


cos |x| प्रत्येक स्थान पर अवकलनीय है।


`2^(cos^(2_x)`


`log (x + sqrt(x^2 + "a"))`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.


यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।


[0, 1] में f(x) = x(x – 1)2


[0, π] में f(x) = sinx – sin2x 


माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×