मराठी

Tan–1x के सापेक्ष tan-1(1+x2-1x) को अवकलित कीजिए, जब x ≠ 0. - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.

बेरीज

उत्तर

मान लीजिए y = `tan^-1 ((sqrt(1 + x^2) - 1)/x)` and z = tan–1x.

x = tan θ रखो।

∴ y = `tan^-1 ((sqrt(1 + tan^2 theta) - 1)/tan theta)` और z = tan–1(tan θ) = θ

⇒ `tan ((sqrt(sec theta) - 1)/tan) = tan^-1 ((sec theta - 1)/tan theta)`

= `tan^-1 ((1/(cos theta) - 1)/((sin theta)/(cos theta))) = tan^-1 ((1 - cos theta)/sin theta)`

⇒ `tan^-1 ((2 sin^2  theta/2)/(2 sin  theta /2 cos  theta/2)) = tan^-1 ((sin  theta/2)/(cos  theta/2))`

⇒ y = `tan^-1 (tan  theta/2)`

⇒ y = `theta/2`

दोनों प्राचलिक फलनों में अंतर करना w.r.t. θ

`"dy"/("d"theta) = 1/2 * "d"/("d"theta) (theta)` और `"dz"/("d"theta) = "d"/("d"theta) (theta)`

= `1/2 * 1`

= `1/2` और `"dz"/("d"theta)` = 1

∴ `"dy"/"dz" = ("dy"/("d"theta))/("dz"/("d"theta))`

= `(1/2)/1`

= `1/2`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 53 | पृष्ठ १०८

संबंधित प्रश्‍न

मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि"  x ≠ 0),(0",",  "यदि"  x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु  x = 0 पर असंतत है।


f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

 x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 


sinx2 + sin2x + sin2(x2)


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


sec(x + y) = xy


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।


[–1, 1] में f(x) = log(x2 + 2) – log3 


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[0, π] में f(x) = sinx – sin2x 


यदि  f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।


यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×