मराठी

यदि yx = ey – x तो सिद्ध कीजिए कि dydxdydx=(1+logy)2logy - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`

बेरीज

उत्तर

दिया गया है: yx = ey – x 

दोनों पक्षों पर log लेते हुए log yx = log ey – x 

⇒ x log y = (y – x)log e

⇒ x log y = y – x   .....[∵ log e = 1]

⇒ x log y + x = y

⇒ x(log y + 1) = y

⇒ x = `y/(log y + 1)`

दोनों पक्षों में अंतर करना w.r.t. y

`"dx"/"dy" = "d"/"dy"(y/(log y + 1))`

= `((log y + 1) * 1 - y * "d"/"dy" (log y + 1))/(log y + 1)^2`

= `(log y + 1 - y * 1/2)/(log y + 1)^2`

= `logy/(log y + 1)^2`

हम जानते हैं कि

`"dy"/"dx" = 1/("dx"/"dy")`

= `1/(logy/(log y + 1)^2`

= `(log y + 1)^2/logy`

अत: `"dy"/"dx" = (log y + 1)^2/logy`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 60 | पृष्ठ १०९

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


 यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।


मान लीजिए कि f(x)= |cosx| है।जब,


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


cos |x| प्रत्येक स्थान पर अवकलनीय है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


x = 1 पर f(x) = |x| + |x − 1|


x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  


`8^x/x^8`


sinn (ax2 + bx + c)


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[1, 4] में f(x) = `1/(4x - 1)`


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0


फलन f(x) = `"e"^|x|` 


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×