मराठी

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए- cot-1[1+sinx+1-sinx1+sinx-1-sinx], 0 < x < π2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`

बेरीज

उत्तर

माना, y = `cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`

अब, `1 + sin x = sin^2  x/2  + cos^2  x/2 + 2 sin  x/2 cos  x/2`

`= (cos  x/2 + sin  x/2)`

`therefore sqrt(1 + sin x) = cos  x/2 + sin  x/2`

इसी प्रकार,

`sqrt(1 + sin x) = cos  x/2 + sin  x/2`

y = `cot^-1 [((cos  x/2 + sin  x/2) + (cos  x/2 - sin  x/2))/((cos  x/2 + sin  x/2) - (cos  x/2 + sin  x/2))]`

`= cot^-1  [(cos  x/2 + sin  x/2 + cos  x/2 - sin  x/2)/(cos  x/2 + sin  x/2 - cos  x/2 + sin  x/2)]`

`= cot^-1  [(2 cos  x/2)/(2  sin  x/2)]`

`= cot^-1  (cot  x/2)`

y = `x/2`

x के सापेक्ष अवकलन करने पर,

`dy/dx = 1/2 * d/dx (x) = 1/2`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य तथा अवकलनीयता - अध्याय 5 पर विविध प्रश्नावली [पृष्ठ २०७]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 5 सांतत्य तथा अवकलनीयता
अध्याय 5 पर विविध प्रश्नावली | Q 6. | पृष्ठ २०७

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


 फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


x = 1 पर f(x) = |x| + |x − 1|


x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`log [log(logx^5)]`


`sin sqrt(x) + cos^2 sqrt(x)`


sinmx . cosnx


(x + 1)2(x + 2)3(x + 3)4


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[1, 5] में f(x) = `sqrt(25 - x^2)` 


फलन f(x) = `(4 - x^2)/(4x - x^3)`


फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।


मान लीजिए f(x) = |sin x| है, तब


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×