हिंदी

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए- cot-1[1+sinx+1-sinx1+sinx-1-sinx], 0 < x < π2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`

योग

उत्तर

माना, y = `cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`

अब, `1 + sin x = sin^2  x/2  + cos^2  x/2 + 2 sin  x/2 cos  x/2`

`= (cos  x/2 + sin  x/2)`

`therefore sqrt(1 + sin x) = cos  x/2 + sin  x/2`

इसी प्रकार,

`sqrt(1 + sin x) = cos  x/2 + sin  x/2`

y = `cot^-1 [((cos  x/2 + sin  x/2) + (cos  x/2 - sin  x/2))/((cos  x/2 + sin  x/2) - (cos  x/2 + sin  x/2))]`

`= cot^-1  [(cos  x/2 + sin  x/2 + cos  x/2 - sin  x/2)/(cos  x/2 + sin  x/2 - cos  x/2 + sin  x/2)]`

`= cot^-1  [(2 cos  x/2)/(2  sin  x/2)]`

`= cot^-1  (cot  x/2)`

y = `x/2`

x के सापेक्ष अवकलन करने पर,

`dy/dx = 1/2 * d/dx (x) = 1/2`

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य तथा अवकलनीयता - अध्याय 5 पर विविध प्रश्नावली [पृष्ठ २०७]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 5 सांतत्य तथा अवकलनीयता
अध्याय 5 पर विविध प्रश्नावली | Q 6. | पृष्ठ २०७

संबंधित प्रश्न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।


`2^(cos^(2_x)`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


tan–1(x2 + y2) = a


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


दो संतत फलनों का संयोजन एक संतत फलन होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×