हिंदी

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए- (log x)log x, x > 1 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(log x)log x, x > 1

योग

उत्तर १

माना, y = (log x)log x

दोनों ओर लघुगणक लेने पर,

`1/y dy/dx = (sin x - cos x) d/dx  log (sin x - cos x) + log (sin x - cos x) d/dx (sin x - cos x)`

`= (sin x - cos x) xx 1/(sin x - cos x) d/dx (sin x - cos x) + log (sin x - cos x)(cos x + sin x)`

`= (cos x + sin x) + log (sin x - cos x)(cos x + sin x)`

`= (cos x + sin x) [1 + log (sin x - cos x)]`

`therefore dy/dx = y (cos x + sin x) [1 + log (sin x - cos x)]`

`= (sin x - cos x)^((sin x - cos x))  (cos x + sin x)[1 + log(sin x - cos x)]`

shaalaa.com

उत्तर २

माना, y = (log x)log x

दोनों ओर लघुगणक लेने पर,

log y = log x log (log x)

दोनों पक्षों (1) का x के सापेक्ष अवकलन करने पर, हम पाते हैं,

`1/y dy/dx = log x* 1/log x * 1/x + log (log x) * 1/x`

`= 1/x * [1 + log (log x)]`

`dy/dx = (log x)^(log x) * 1/x * [1 + log (log x)], x>1`

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य तथा अवकलनीयता - अध्याय 5 पर विविध प्रश्नावली [पृष्ठ २०७]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 5 सांतत्य तथा अवकलनीयता
अध्याय 5 पर विविध प्रश्नावली | Q 7. | पृष्ठ २०७

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


मान लीजिए कि f(x)= |cosx| है।जब,


y = |x – 1| एक संतत फलन है।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "यदि"  0 ≤ x ≤ 1):}` 


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


`log (x + sqrt(x^2 + "a"))`


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


f(x) = `{{:(x^2 + 1",",  "यदि"  0 ≤ x ≤ 1),(3 - x",",  "यदि"  1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।


[1, 5] में f(x) = `sqrt(25 - x^2)` 


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×