हिंदी

[1, 5] में f(x) = 25-x2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

[1, 5] में f(x) = `sqrt(25 - x^2)` 

योग

उत्तर

हमारे पास है, [1, 5] में f(x) = `sqrt(25 - x^2)` 

क्योंकि 25 – x2 और वर्गमूल फलन अपने क्षेत्र में संतत और अवकलनीय हैं, इसलिए दिया गया फलन f(x) भी संतत और अवकलनीय है।

अतः माध्य मान प्रमेय की स्थि‍ति संतुष्ट होती है।

इसलिए, कम से कम एक c ∈ (1, 5) मौजूद है जैसे कि,

f'(c) = `("f"(5) - "f"(1))/(5 - 1)`

⇒ `(-"c")/sqrt(25 - "c"^2) = (0 - sqrt(24))/4`

⇒ 16c2 = 24(25 – c2)

⇒ 40c2 = 600

⇒ c2 = 15

⇒ c = `sqrt(15) ∈ (1, 5)`

इसलिए, माध्य मान प्रमेय को सत्यापित कर दिया गया है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 76 | पृष्ठ ११०

संबंधित प्रश्न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


 फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


x = 1 पर f(x) = |x| + |x − 1|


सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`  से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।


x = 2 पर, f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`8^x/x^8`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


फलन f(x) = `"e"^|x|` 


 यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।


 यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


दो संतत फलनों का संयोजन एक संतत फलन होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×