Advertisements
Chapters
2: प्रतिलोम तिरिकोंमितिया फलन
3: आव्यूह
4: सारणिक
▶ 5: सांतत्य और अवकलनीयता
6: अवकलज के अनुप्रयोग
7: समाकल
8: स्माकलो के अनुप्रयोग
9: अवकल समीकरण
10: सदिश बीजगणित
Chapter 11: त्रिविमयि ज्यामिति
Chapter 12: रैखिक प्रोग्रामन
Chapter 13: प्रायिकता
![NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 5 - सांतत्य और अवकलनीयता NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 5 - सांतत्य और अवकलनीयता - Shaalaa.com](/images/mathematics-hindi-class-12_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Advertisements
Solutions for Chapter 5: सांतत्य और अवकलनीयता
Below listed, you can find solutions for Chapter 5 of CBSE NCERT Exemplar for Mathematics [Hindi] Class 12.
NCERT Exemplar solutions for Mathematics [Hindi] Class 12 5 सांतत्य और अवकलनीयता हल उदाहरण [Pages 89 - 104]
लघु उत्तरीय
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि ex + ey = ex+y दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
दीर्घ उत्तरीय उदाहरण
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु x = 0 पर असंतत है।
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
वस्तुनिष्ठ प्रकार के प्रश्न 24 से 35 तक
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
3
2
1
1.5
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
4
– 2
1
1.5
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
1
2
3
इनमें से कोई नहीं
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
`{"n"pi: "n" ∈ "Z"}`
`{2"n"pi: "n" ∈ "Z"}`
`{(2"n" + 1) pi/2 : "n" ∈ "Z"}`
`{("n"pi)/2 : "n" ∈ "Z"}`
मान लीजिए कि f(x)= |cosx| है।जब,
f प्रत्येक स्थान पर अवकलनीय है।
f प्रत्येक स्थान पर संतत है, परंतु n = nπ, n ∈ Z पर अवकलनीय नहीं है।
f प्रत्येक स्थान पर संतत है, परंतु x = `(2"n" + 1) pi/2, "n" ∈ "Z"` पर अवकलनीय नहीं है।
इनमें से कोई नहीं
फलन f(x) = |x| + |x – 1|
x = 0 तथा x = 1 दोनों पर संतत है।
x = 1 पर संतत है, परंतु x = 0 पर संतत नहीं है।
x = 0 तथा x = 1 दोनों पर असंतत है।
x = 0 पर संतत है, परंतु x = 1 पर संतत नहीं है।
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
8
1
–1
इनमें से कोई नहीं
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
R
R – {3}
(0, ∞)
इनमें से कोई नहीं
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
`x/sqrt(1 + x^2)`
`x/(1 + x^2)`
`xsqrt(1 + x^2)`
`1/sqrt(1 + x^2)`
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
`1/2`
x
`(1 - x^2)/(1 + x^2)`
1
फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है
`pi/6`
`pi/4`
`pi/2`
`(3pi)/4`
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
`3/2`
`2/3`
`1/2`
`3/2`
निम्नलिखित का सुमेलन कीजिए-
निम्नलिखित का सुमेलन कीजिए-
स्तंभ-I | स्तंभ-II |
(A) यदि फलन f(x) = `{((sin3x)/x, "यदि फलन" x = 0),("k"/2",", "यदि फलन" x = 0):}` x = 0 पर संतत है, तो k बराबर है |
(a) |x| |
(B) प्रत्येक संतत फलन अवकलनीय होता हैं | (b) सत्य |
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है | (c) 6 |
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R एक संतत फलन है |
(d) असत्य |
उदाहरणों 37 से 41 तक रिक्त स्थानों को भरिए-
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
x के सापेक्ष log10 का अवकलज ______ है।
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
cos x के सापेक्ष sin x का अवकलज ______ है।
42 से 46 तक बताइए कि कथन सत्य या असत्य है-
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
सत्य
असत्य
y = |x – 1| एक संतत फलन है।
सत्य
असत्य
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
सत्य
असत्य
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
सत्य
असत्य
cos |x| प्रत्येक स्थान पर अवकलनीय है।
सत्य
असत्य
NCERT Exemplar solutions for Mathematics [Hindi] Class 12 5 सांतत्य और अवकलनीयता प्रश्नावली [Pages 104 - 113]
संक्षिप्त उत्तर
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
ज्ञात कीजिए कि प्रश्न 2 से 10 तक में दिए फलनों में से कौन से फलन इंगित बिंदुओं पर संतत या असंतत हैं:
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
x = 0 पर f(x) = `{{:(|x|cos 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = a पर f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "यदि" x ≠ 0),(0",", "यदि" x = "a"):}`
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
x = 1 पर f(x) = |x| + |x − 1|
प्रश्न 11 से 14 तक प्रत्येक में k का वह मान ज्ञात कीजिए जिसके लिए फलन इंगित बिदु पर सतत है:
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
प्रश्न 20 से 22 में, f की अवकलनीयता की जाँच कीजिए जब कि f निम्नलिखित द्वारा परिभाषित है-
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
निम्नलिखित प्रश्न 25 से 43 तक प्रत्येक को x के सापेक्ष अवकलित कीजिए-
`2^(cos^(2_x)`
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
`sin sqrt(x) + cos^2 sqrt(x)`
sinn (ax2 + bx + c)
`cos(tan sqrt(x + 1))`
sinx2 + sin2x + sin2(x2)
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
sinmx . cosnx
(x + 1)2(x + 2)3(x + 3)4
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
प्रश्न 44 से 48 तक प्राचलिक रूप में दिये फलनों में से प्रत्येक के लिए dy/dx ज्ञात कीजिए-
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
प्रश्न 54 से 57 तक प्रत्येक में dy/dx ज्ञात कीजिए, जबकि x और y दिये हुए संबंध से संयोजित हैं
`sin xy + x/y` = x2 – y
sec(x + y) = xy
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।
प्रश्न 65 से 69 तक दिये फलनों में से प्रत्येक के लिए रोले के प्रमेय का सत्यापन कीजिए-
[0, 1] में f(x) = x(x – 1)2
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[–1, 1] में f(x) = log(x2 + 2) – log3
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
प्रश्न 73 से 76 तक दिये हुए फलनों में से प्रत्येक के लिए माध्यमान प्रमेय का सत्यापन कीजिए-
[1, 4] में f(x) = `1/(4x - 1)`
[0, 1] में f(x) = x3 – 2x2 – x + 3
[0, π] में f(x) = sinx – sin2x
[1, 5] में f(x) = `sqrt(25 - x^2)`
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।
दीर्घ उत्तरीय
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
वस्तुनिष्ठ प्रश्न 83 से 96 तक दिये हुए चारों विकल्पों में से सही विकल्प चुनिए-
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
f (x) + g (x)
f (x) – g (x)
f (x) . g (x)
`("g"(x))/("f"(x))`
फलन f(x) = `(4 - x^2)/(4x - x^3)`
केवल एक बिंदु पर असंतत है।
ठीक दो बिंदुओं पर असंतत है।
ठीक तीन बिंदुओं पर असंतत है।
इनमें से कोई नहीं।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
R
`"R" - {1/2}`
`(0, oo)`
इनमें से कोई नहीं।
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
{x = nπ : n ∈ Z}
{x = 2nπ : n ∈ Z}
`{x = (2"n" + 1)pi/2 ; "n" ∈ "Z"}`
`{x = ("n"pi)/2 ; "n" ∈ "Z"}`
फलन f(x) = `"e"^|x|`
प्रत्येक स्थान पर संतत है, परंतु x = 0 पर अवकलनीय नहीं है।
प्रत्येक स्थान पर संतत और अवकलनीय है।
x = 0 पर संतत नहीं है।
इनमें से कोई नहीं।
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
0
– 1
1
इनमें से कोई नहीं
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
m = 1, n = 0
m = `("n"pi)/2 + 1`
n = `("m"pi)/2`
m = n = `pi/2`
मान लीजिए f(x) = |sin x| है, तब
f प्रत्येक स्थान पर अवकलनीय है।
f प्रत्येक स्थान पर संतत है, परंतु x = nπ, n ∈ Z पर अवकलनीय नहीं है।
f प्रत्येक स्थान पर संतत है परंतु x = `(2"n" + 1) pi/2`, n ∈ Z पर अवकलनीय नहीं है।
इनमें से कोई नहीं।
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
`(4x^3)/(1 - x^4)`
`(-4x)/(1 - x^4)`
`1/(4 - x^4)`
`(-4x^3)/(1 - x^4)`
यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।
`cos/(2y - 1)`
`cosx/(1 - 2y)`
`sinx/(1 - 2y)`
`sinx/(2y - 1)`
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
2
`(-1)/(2sqrt(1 - x^2)`
`2/x`
1 – x2
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
`3/2`
`3/(4"t")`
`3/(2"t")`
`3/4`
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
1
`sqrt(3)`
2
इनमें से कोई नहीं
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
1
`sqrt(3)`
2
इनमें से कोई नहीं
97 से 101 तक रिक्त स्थानों की पूर्ति कीजिए :
एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।
x3 के सापेक्ष x2 अवकलज ______ है।
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
प्रश्न संख्या 102 से 106 तक बताइए कि दिए हुए कथन सत्य या असत्य है -
[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।
सत्य
असत्य
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।
सत्य
असत्य
दो संतत फलनों का संयोजन एक संतत फलन होता है।
सत्य
असत्य
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।
सत्य
असत्य
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।
सत्य
असत्य
Solutions for 5: सांतत्य और अवकलनीयता
![NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 5 - सांतत्य और अवकलनीयता NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 5 - सांतत्य और अवकलनीयता - Shaalaa.com](/images/mathematics-hindi-class-12_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 5 - सांतत्य और अवकलनीयता
Shaalaa.com has the CBSE Mathematics Mathematics [Hindi] Class 12 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Mathematics [Hindi] Class 12 CBSE 5 (सांतत्य और अवकलनीयता) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [Hindi] Class 12 chapter 5 सांतत्य और अवकलनीयता are सांतत्य तथा अवकलनीयता, सांतत्य, संतत फलनों का बीजगणित, अवकलनीयता, संयुक्त फलनों के अवकलज, अस्पष्ट फलनों के अवकलज, प्रतिलोम त्रिकोणमितीय फलनों के अवकलज, चरघातांकी तथा लघुगणकीय फलन, लघुगणकीय अवकलन, फलनों के प्राचलिक रूपों के अवकलज, द्वितीय कोटि का अवकलन, माध्यमान प्रमेय.
Using NCERT Exemplar Mathematics [Hindi] Class 12 solutions सांतत्य और अवकलनीयता exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [Hindi] Class 12 students prefer NCERT Exemplar Textbook Solutions to score more in exams.
Get the free view of Chapter 5, सांतत्य और अवकलनीयता Mathematics [Hindi] Class 12 additional questions for Mathematics Mathematics [Hindi] Class 12 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.