Advertisements
Advertisements
प्रश्न
यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
उत्तर
दिया है कि y = `(cos x)^((cos x)^((cosx)....oo)`,
⇒ y = (cos x)y .....`[y = (cos x)^((cos x)^((cosx)....oo))]`
दोनों पक्षों पर log लेते हुए log y = y.log(cos x)
दोनों पक्षों में अंतर करना w.r.t. x
`1/y * "dy"/"dx" = y * "d"/"dx" log (cos x ) + log(cos x) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" = y * 1/cosx * "d"/"dx" (cos x) + log(cos x) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" = y* 1/cosx * (- sin x) + log(cosx) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" - log(cos x) "dy"/"dx"` = – y tan x
⇒ `[1/y - log (cosx)] "dy"/"dx"` = – y tan x
⇒ `"dy"/"dx" = (- y tanx)/(1/y - log(cosx))`
= `(y^2 tanx)/(y log cos x - 1)`
इसलिए, `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`.
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
यदि ex + ey = ex+y दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
cos x के सापेक्ष sin x का अवकलज ______ है।
y = |x – 1| एक संतत फलन है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 1 पर f(x) = |x| + |x − 1|
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
`sin^-1 1/sqrt(x + 1)`
sinmx . cosnx
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
(x2 + y2)2 = xy
[0, 1] में f(x) = x(x – 1)2
x3 के सापेक्ष x2 अवकलज ______ है।
दो संतत फलनों का संयोजन एक संतत फलन होता है।
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।