हिंदी

Sin x = tt2t1+t2, tan y = tt2t1-t2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`

योग

उत्तर

यह देखते हुए कि sin x = `(2"t")/(1 + "t"^2)` और tan y = `(2"t")/(1 - "t"^2)`

∴  sin x = `(2"t")/(1 + "t"^2)`  लेना

दोनों पक्षों को w.r.t t, से अलग करने पर, हम प्राप्त करते हैं

`cosx* "dx"/"dt" = ((1 + "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 + "t"^2))/(1 + "t"^2)^2`

⇒ `cosx * "dx"/"dt" = (2(1 + "t"^2) - 2"t" * 2"t")/(1 + "t"^2)^2`

⇒ `"dx"/"dt" = (2 + 2"t"^2 - 4"t"^2)/(1 - "t"^2)^2 xx 1/cosx`

⇒ `"dx"/"dt" = (2 - 2"t"^2)/(1 + "t"^2)^2 xx 1/sqrt(1 - sin^2x)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 - ((2"t")/(1 + "t"^2))^2`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/(sqrt((1 + "t"^2)^2 - 4"t"^2)/(1 + "t"^2)^2)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx (1 + "t"^2)/sqrt(1 + "t"^4 + 2"t"^2 - 4"t"^2)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 + "t"^4 - 2"t"^2)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt((1 - "t"^2)^2`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/((1 - "t"^2))`

 ⇒ `"dx"/"dt" = 2/(1 + "t"^2)`

अब लेना, tan y = `2/(1 - "t"^2)`

दोनों पक्षों को w.r.t, t, से अलग करने पर, हम प्राप्त करते हैं

`"d"/"dt" (tan y) = "d"/"dt" ((2"t")/(1 - "t"^2))`

⇒ `sec^2y  "dy"/"dt" = ((1 - "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 - "t"^2))/((1 - "t"^2)^2`

⇒ `sec^2y "dy"/"dt" = ((1 - "t"^2) * 2 - 2"
t" * (-2"t"))/(1 - "t"^2)^2`

⇒ `sec^2y "dy"/"dt" = (2 - 2"t"^2 + 4"t"^2)/(1 - "t"^2)^2`

⇒ `"dy"/"dt" = (2 + 2"t"^2)/(1 - "t"^2)^2 xx 1/sec^2y`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + tan^2y)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + ((2"t")/(1 - "t"^2))^2`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(((1 - "t"^2)^2 + 4"t"^2)/(1 - "t"^2)^2)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2 + 2"t"^2 + 4"t"^2)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^4 + 2"t"^2)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2)^2`

⇒ `"dy"/"dt" = 2/(1 + "t"^2)`

∴ `"dy"/"dt" = ("dy"/"dt")/("dx"/"dt")`

= `(2/(1 + "t"^2))/(2/(1 + "t"^2))`

= 1

अत: `"dy"/"dt"` = 1

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 47 | पृष्ठ १०८

संबंधित प्रश्न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

x के सापेक्ष log10 का अवकलज ______ है।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


`2^(cos^(2_x)`


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


sinn (ax2 + bx + c)


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।


[0, 1] में f(x) = x(x – 1)2


[1, 5] में f(x) = `sqrt(25 - x^2)` 


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`


यदि f(x) = `x^2 sin  1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।


मान लीजिए f(x) = |sin x| है, तब


 यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×