हिंदी

यदि y = tan–1x, तो केवल y के पदों में ddxd2ydx2 ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।

योग

उत्तर

दिया गया है कि: y = tan–1x

⇒ x = tan y

दोनों पक्षों में अंतर करना w.r.t. y

`"dx"/"dy"` = sec2y

⇒ `"dy"/'dx" = 1/(sec^2y)` = cos2y

दोनों पक्षों को फिर से विभेदित करना w.r.t. x

⇒ `"d"/"dx"("dy"/"dx") = "d"/"dx"(cos^2y)`

⇒ `("d"^2y)/("dx"^2) = 2cos y * "d"/"dx" (cos y)`

⇒ `("d"^2y)/("dx"^2) = 2cos y(- siny) * "dy"/"dx"` 

⇒ `("d"^2y)/("dx"^2) = - 2sin y cos y * cos^2 y`

∴ `("d"^2y)/("dx"^2)` = – 2 sin y cos3y

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 64 | पृष्ठ १०९

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


 cos x के सापेक्ष sin x का अवकलज ______ है।


एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।


 x = 2 पर f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


sinn (ax2 + bx + c)


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


sec(x + y) = xy


[–1, 1] में f(x) = log(x2 + 2) – log3 


[1, 4] में f(x) = `1/(4x - 1)`


[0, 1] में f(x) = x3 – 2x2 – x + 3 


[0, π] में f(x) = sinx – sin2x 


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×