हिंदी

यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = π3 पर dydxdydx ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।

योग

उत्तर

दिया गया है: x = 3sint – sin 3t, y = 3cost – cos 3t.

दोनों प्राचलिक फलनों में अंतर करना w.r.t. t

`"dx"/"dt" = 3 cos "t" - cos 3"t" * 3`

= 3(cos t – cos 3t)

`"dy"/"dx" = -3 sin "t" + sin 3"t" * 3`

= 3(– sin t + sin 3t)

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(3(- sin "t" + sin 3"t"))/(3(cos "t" - cos 3"t"))`

= `(-sin "t" + sin 3"t")/(cos "t" - cos 3"t")`

t = `pi/3` लगाए

`"dy"/"dx" = (- sin  pi/3 + sin 3 (pi/3))/(cos  pi/3 - cos  3 (pi/3))`

= `(- sqrt(3)/2 + sin pi)/(1/2 - cos pi)`

= `(- sqrt(3)/2 + 0)/(1/2 - (- 1))`

= `(- sqrt(3)/2)/(1/2 + 1)`

= `(- sqrt(3)/2)/(3/2)`

= `(-1)/sqrt(3)`

अत:, `"dy"/"dx" = (-1)/sqrt(3)`

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 51 | पृष्ठ १०८

संबंधित प्रश्न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(log x)log x, x > 1


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


 यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।


दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि"  x ≠ 0),(0",",  "यदि"  x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु  x = 0 पर असंतत है।


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


cos |x| प्रत्येक स्थान पर अवकलनीय है।


x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


फलन f(x) = `(4 - x^2)/(4x - x^3)`


फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×