हिंदी

यदि y = xtanx+x2+12 है, तो dydxdydx ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।

योग

उत्तर

दिया गया है कि: y = `x^tanx + sqrt((x^2 + 1)/2)`

मान लीजिए u = `x^tanx` तथा v = `sqrt((x^2 + 1)/2)`

∴ y = u + v

दोनों पक्षों में अंतर करना w.r.t. x

`"dy"/"dx" = "du"/"dx" + "dv"/"dx"`   .....(i)

अब u लेना = `x^tanx`

दोनों ओर से log लेना log u = `log(x^tanx)`

log u = tan x . log x

दोनों पक्षों में अंतर करना w.r.t. x

`1/"u" * "du"/"dx" = "d"/"dx"(tan x * log x)`

⇒ `1/"u" * "du"/"dx" = tan x * "d"/"dx" (log x) + log x * "d"/"dx" (tan x)`

⇒ `1/"u" * "du"/"dx" = tan x * 1/x + log x * sec^2x`

⇒ `"du"/"dx" = "u"[tanx/x + log x * sec^2x]`

∴ `"du"/"dx" = x^tanx [tanx/x + log x sec^2x]`

v लेना = `sqrt((x^2 + 1)/2)`

⇒ v = `1/sqrt(2) sqrt(x^2 + 1)`

दोनों पक्षों में अंतर करना w.r.t. x

`"dv"/"dx" = 1/sqrt(2) * 1/(2sqrt(x^2 + 1)) * 2x`

= `x/(sqrt(2)sqrt(x^2 + 1))`

समीकरण (i) में `"du"/"dx"` और `"dv"/"dx"` के मान डालने पर

`"dy"/"dx" = x^tanx [log x sec^2x + tanx/x] + x/(sqrt(2)sqrt(x^2 + 1))`

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 82 | पृष्ठ ११०

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(log x)log x, x > 1


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


 यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


यदि फलन f(x) = `{{:(sinx/x + cosx",",  "यदि" x ≠ 0),("k"",",  "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


[– 2, 2] में f(x) = `sqrt(4 - x^2)` 


f(x) = `{{:(x^2 + 1",",  "यदि"  0 ≤ x ≤ 1),(3 - x",",  "यदि"  1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।


यदि f(x) = `x^2 sin  1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


x3 के सापेक्ष  x2 अवकलज ______ है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×