Advertisements
Advertisements
प्रश्न
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
उत्तर
दिया गया है कि: y = `x^tanx + sqrt((x^2 + 1)/2)`
मान लीजिए u = `x^tanx` तथा v = `sqrt((x^2 + 1)/2)`
∴ y = u + v
दोनों पक्षों में अंतर करना w.r.t. x
`"dy"/"dx" = "du"/"dx" + "dv"/"dx"` .....(i)
अब u लेना = `x^tanx`
दोनों ओर से log लेना log u = `log(x^tanx)`
log u = tan x . log x
दोनों पक्षों में अंतर करना w.r.t. x
`1/"u" * "du"/"dx" = "d"/"dx"(tan x * log x)`
⇒ `1/"u" * "du"/"dx" = tan x * "d"/"dx" (log x) + log x * "d"/"dx" (tan x)`
⇒ `1/"u" * "du"/"dx" = tan x * 1/x + log x * sec^2x`
⇒ `"du"/"dx" = "u"[tanx/x + log x * sec^2x]`
∴ `"du"/"dx" = x^tanx [tanx/x + log x sec^2x]`
v लेना = `sqrt((x^2 + 1)/2)`
⇒ v = `1/sqrt(2) sqrt(x^2 + 1)`
दोनों पक्षों में अंतर करना w.r.t. x
`"dv"/"dx" = 1/sqrt(2) * 1/(2sqrt(x^2 + 1)) * 2x`
= `x/(sqrt(2)sqrt(x^2 + 1))`
समीकरण (i) में `"du"/"dx"` और `"dv"/"dx"` के मान डालने पर
`"dy"/"dx" = x^tanx [log x sec^2x + tanx/x] + x/(sqrt(2)sqrt(x^2 + 1))`
APPEARS IN
संबंधित प्रश्न
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
मान लीजिए कि f(x)= |cosx| है।जब,
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`log [log(logx^5)]`
sinmx . cosnx
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
`sin xy + x/y` = x2 – y
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
मान लीजिए f(x) = |sin x| है, तब
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।