मराठी

यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि dydxdydxp(1-x2)d2ydx2-xdydx+p2y = 0 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।

बेरीज

उत्तर

दिया गया है कि: x = sin t और y = sin pt

दोनों प्राचलिक फलनों को अलग करना w.r.t. t

`"dx"/"dt"` = cos t and `"dy"/"dt"` = cos pt. p = p cos pt

`"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `("p" cos "pt")/cos "t"`

∴ `"dy"/"dx" = ("p" cos "pt")/cos"t"`

फिर से अंतर करना w.r.t. x,

`"d"/"dx"("dy"/"dx") = "p"*"d"/"dx"(cos"pt"/cos"t")`

⇒ `("d"^2y)/("dx"^2) = "p"[(cos "t" * "d"/"dx" (cos "pt") - cos "pt" * "d"/"dx" (cos "t"))/(cos^2"t")]`

= `"p"[(cos"t"(- sin "pt") * "p" "dt"/"dx" - cos "pt"(- sin "t") * "dt"/"dx")/(cos^2"t")]`

= `"p"[(-"p" cos "t" sin "pt" + cos "pt" sin "t")/(cos^2"t")]"dt"/"dx"`

= `"p"[(-"p" cos "t" sin "pt" + cos "pt" sin "t")/(cos^2"t")]* 1/cos"t"`

= `"p"[(-"p" cos "t" sin "pt" + cos "pt" sin "t")/cos^3"t"]`

अब हमें यह साबित करना है कि

`(1 - x^2) * ("d"^2y)/("dx"^2) - x * "dy"/"dx" + "p"^2y` = 0

L.H.S. = `(1 - x^2) ["p"((-"p" cos "t" sin "pt" + cos "pt" sin "t")/cos^3"t")] - x."p" (cos "pt")/cos"t" + "p"^2y`

⇒ `(1 - sin^2"t") ["p"((-"p" cos "t" sin "pt" + cos "pt" sin "t")/cos^3"t")] - ("p" sin "t" * cos "pt")/cos"t" + "p"^2 * sin "pt"`

⇒ `cos^2"t" [(-"p"^2 cos "t" sin "pt" + cos "pt" sin "t")/(cos^3"t")] - ("p" sin "t" * cos "pt")/cos"t" + "p"^2 * sin "pt"`

⇒ `(-"p"^2 cos "t" sin "pt" + "p" cos "pt" sin "t")/cos "t" - ("p" sin "t" cos "pt")/cos"t" + "p"^2 sin "pt"`

⇒ `(-"p"^2 cos "t" sin "pt" + "p" cos "pt" sin "t" - "p" sin "t" cos "pt" + "p"^2 sin "pt" cos "t")/cos "t"`

⇒ `0/cos"t"` = 0 = R.H.S.

इसलिए साबित हुआ।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 81 | पृष्ठ ११०

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।


 x = 2 पर f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` 


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


x = 5 पर f(x) = `{{:(3x - 8",",  "यदि"  x ≤ 5),(2"k"",",  "यदि"  x > 5):}` 


सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`  से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।


`8^x/x^8`


(sin x)cosx


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


sec(x + y) = xy


(x2 + y2)2 = xy


`[0, pi/2]` esa f(x) = `sin^4x + cos^4x` 


रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[1, 4] में f(x) = `1/(4x - 1)`


p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}` बिंदु x = 1 पर अवकलनीय हो।


फलन f(x) = `"e"^|x|` 


x3 के सापेक्ष  x2 अवकलज ______ है।


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×