Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
उत्तर
हमारे पास f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
x = 0 पर
L.H.L. = `lim_(x ->0^+) ((0 - "h"))/(|0 - "h"| + 2(0 - "h")^2`
= `lim_("h" -> 0) (-"h")/("h" + 2"h"^2)`
= `lim_("h" -> 0) (-1)/(1 + 2"h")`
= – 1
R.H.L. = `lim_(x -> 0^+) x/(|x| + 2x^2)`
= `lim_("h" -> 0) (0 + "h")/(|0 + "h"| + 2(0 + "h")^2`
= `lim_("h" -> 0) "h"/("h" + 2"h"^2)`
= `lim_("h" -> 0) 1/(1 + 2"h")`
= 1
क्योंकि, L.H.L. ≠ R.H.L. k के किसी भी मान के लिए
इसलिए, k की पसंद की परवाह किए बिना f(x) x = 0 पर असंतत है।
APPEARS IN
संबंधित प्रश्न
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
y = |x – 1| एक संतत फलन है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`8^x/x^8`
`log [log(logx^5)]`
sinn (ax2 + bx + c)
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______