English

सिद्ध कीजिए कि f(x) = ,k{x|x|+2x2, x≠0k x=0 से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए। - Mathematics (गणित)

Advertisements
Advertisements

Question

सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`  से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।

Sum

Solution

हमारे पास f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`

x = 0 पर

L.H.L. = `lim_(x ->0^+) ((0 - "h"))/(|0 - "h"| + 2(0 - "h")^2`

= `lim_("h" -> 0) (-"h")/("h" + 2"h"^2)`

= `lim_("h" -> 0) (-1)/(1 + 2"h")`

= – 1

R.H.L. = `lim_(x -> 0^+) x/(|x| + 2x^2)`

= `lim_("h" -> 0) (0 + "h")/(|0 + "h"| + 2(0 + "h")^2`

= `lim_("h" -> 0) "h"/("h" + 2"h"^2)`

= `lim_("h" -> 0) 1/(1 + 2"h")`

= 1

क्योंकि, L.H.L. ≠ R.H.L. k के किसी भी मान के लिए

इसलिए, k की पसंद की परवाह किए बिना f(x) x = 0 पर असंतत है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 106]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 15 | Page 106

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि"  x ≠ 0),(0",",  "यदि"  x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु  x = 0 पर असंतत है।


फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


x के सापेक्ष log10 का अवकलज ______ है।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि"  x ≠ 0),(5",", "यदि"  x = 0):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


`log [log(logx^5)]`


sinn (ax2 + bx + c)


sinx2 + sin2x + sin2(x2)


(x + 1)2(x + 2)3(x + 3)4


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sec(x + y) = xy


(x2 + y2)2 = xy


[0, 1] में f(x) = x(x – 1)2


रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`


फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×