Advertisements
Advertisements
Question
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
Solution
माना y = `tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx))`
⇒ y = `tan^-1 [(("a"cosx)/("b"cosx) - ("b"sinx)/("b"cosx))/(("b"cosx)/("b"cosx) + ("a"sinx)/("b"cosx))]`
⇒ y = `tan^-1 [("a"/"b" - tanx)/(1 + "a"/"b" tanx)]`
⇒ y = `tan^-1 "a"/"b" - tan^-1 (tanx)` ....`["क्योंकि" tan^-1 ((x - y)/(1 + xy)) = tan^-1x - tan^-1 y]`
⇒ y = `tan^-1 "a"/"b" - x`
x के सन्दर्भ में दोनों पक्षों का अवकलन करना
`"dy"/"dx" = "d"/"dx"(tan^-1 "a"/"b") - "d"/"dx"(x)` = 0 – 1 = – 1
अत: `"dy"/"dx"` = – 1.
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`
मान लीजिए कि f(x)= |cosx| है।जब,
x के सापेक्ष log10 का अवकलज ______ है।
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`8^x/x^8`
(sin x)cosx
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
`sin xy + x/y` = x2 – y
tan–1(x2 + y2) = a
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
फलन f(x) = `(4 - x^2)/(4x - x^3)`
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।