Advertisements
Advertisements
Question
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
Solution
x = 0 पर, वाम पक्ष की सीमा नीचे दिए अनुसार प्राप्त होती है-
`lim_(x -> 0^-) "f"(x) = lim_(x -> 0^-) x sin 1/x` = 0 ....`["क्योंकि", -1 < sin 1/x < 1]`
इसी प्रकार, `lim_(x -> 0^+) "f"(x) = lim_(x -> 0^+) x sin 1/x` = 0 है।
साथ ही, f(0) = 0 है।
इस प्रकार, `lim_(x -> 0^-) "f"(x) = lim_(x -> 0^-) "f"(x)` = f(0) है।
अत:, x = 0 पर फलन f संतत है।
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
मान लीजिए कि f(x)= |cosx| है।जब,
फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
`sin sqrt(x) + cos^2 sqrt(x)`
sinx2 + sin2x + sin2(x2)
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
`sin xy + x/y` = x2 – y
[0, 1] में f(x) = x(x – 1)2
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[–1, 1] में f(x) = log(x2 + 2) – log3
[1, 4] में f(x) = `1/(4x - 1)`
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।