Advertisements
Advertisements
Question
[0, 1] में f(x) = x(x – 1)2
Solution
हमारे पास, [0, 1] में f(x) = x(x – 1)2 है।
क्योंकि, f(x) = x(x – 1)2 एक बहुपद फलन है, यह [0,1] में संतत है और (0, 1) में अवकलनीय है।
अब, f(0) = 0 और f(1)
⇒ f(0) = f(1)
f रोले के प्रमेय की शर्तों को संतुष्ट करता है।
अत: रोले प्रमेय के अनुसार कम से कम एक c ∈ (0, 1) का अस्तित्व इस प्रकार है कि f'(c) = 0
⇒ 3c2 – 4c + 1 = 0
⇒ (3c – 1)(c – 1) = 0
⇒ c = `1/3 ∈ (0, 1)`
इसलिए, रोले के प्रमेय को सत्यापित किया गया है।
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
मान लीजिए कि f(x)= |cosx| है।जब,
फलन f(x) = |x| + |x – 1|
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
`2^(cos^(2_x)`
sinn (ax2 + bx + c)
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[1, 5] में f(x) = `sqrt(25 - x^2)`
माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
x3 के सापेक्ष x2 अवकलज ______ है।
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।