Advertisements
Advertisements
Question
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
Solution
दिया गया है: `"dy"/"dx" = y/x`
दोनों पक्षों में अंतर करना w.r.t. x
`"d"/"dx"("dy"/"dx") = "d"/"dx"(y/x)`
⇒ `("d"^2y)/("dx"^2) = (x* "dy"/"dx" y*1)/x^2`
= `(x * y/x - 1)/x^2` .....`["क्योंकि" "dy"/"dx" = y/x]`
= `(y - y)/x^2`
= `0/x^2`
= 0
इसलिए, `("d"^2y)/("dx"^2)` = 0.
इसलिए साबित हुआ।
APPEARS IN
RELATED QUESTIONS
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(log x)log x, x > 1
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
मान लीजिए कि f(x)= |cosx| है।जब,
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
cos x के सापेक्ष sin x का अवकलज ______ है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`2^(cos^(2_x)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।