Advertisements
Advertisements
Question
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
Options
`x/sqrt(1 + x^2)`
`x/(1 + x^2)`
`xsqrt(1 + x^2)`
`1/sqrt(1 + x^2)`
Solution
सही उत्तर `underline(x/sqrt(1 + x^2))` है।
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
x के सापेक्ष log10 का अवकलज ______ है।
cos x के सापेक्ष sin x का अवकलज ______ है।
y = |x – 1| एक संतत फलन है।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
`log [log(logx^5)]`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
`sin xy + x/y` = x2 – y
sec(x + y) = xy
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[1, 4] में f(x) = `1/(4x - 1)`
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।
दो संतत फलनों का संयोजन एक संतत फलन होता है।