Advertisements
Advertisements
Question
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
Options
R
`"R" - {1/2}`
`(0, oo)`
इनमें से कोई नहीं।
Solution
सही उत्तर `underline("R" - {1/2})` है।
व्याख्या:
यह देखते हुए कि: f(x) = |2x − 1| sinx
स्पष्ट रूप से, f(x) x = `1/2` पर भिन्न नहीं है।
R.H.L. = `"f'"(1/2) = lim_("h" -> 0) ("f"(1/2 + "h") - "f"(1/2))/"h"`
= `lim_("h" -> 0) (|2(1/2 + "h") - 1|sin(1/2 + "h") - 0)/"h"`
= `lim_("h" -> 0) (|2"h"| sin((1 + 2"h")/2))/"h"`
= `2 sin (1/2)`
इसके अलावा L.H.L. = `"f'"(1/2) = lim_("h" -> 0) ("f"(1/2 - "h") - "f"(1/2))/(-"h")`
= `lim_("h" -> 0) (|2(1/2 - "h") - 1|[- sin (1/2 - "h")] - 0)/(-"h")`
= `(|-2"h"|[-sin(1/2 - "h")])/(-"h")`
= `- 2 sin (1/2)`
∴ R.H.L. = `"f'"(1/2)` ≠ L.H.L. `"f'"(1/2)`
तो, दिया गया फलन f(x) x = `1/2` पर भिन्न नहीं है।
∴ f(x) में भिन्न है `"R" - {1/2}`
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}` से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`sin^-1 1/sqrt(x + 1)`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
tan–1(x2 + y2) = a
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
[1, 5] में f(x) = `sqrt(25 - x^2)`
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
फलन f(x) = `(4 - x^2)/(4x - x^3)`
यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।