Advertisements
Advertisements
प्रश्न
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
विकल्प
R
`"R" - {1/2}`
`(0, oo)`
इनमें से कोई नहीं।
उत्तर
सही उत्तर `underline("R" - {1/2})` है।
व्याख्या:
यह देखते हुए कि: f(x) = |2x − 1| sinx
स्पष्ट रूप से, f(x) x = `1/2` पर भिन्न नहीं है।
R.H.L. = `"f'"(1/2) = lim_("h" -> 0) ("f"(1/2 + "h") - "f"(1/2))/"h"`
= `lim_("h" -> 0) (|2(1/2 + "h") - 1|sin(1/2 + "h") - 0)/"h"`
= `lim_("h" -> 0) (|2"h"| sin((1 + 2"h")/2))/"h"`
= `2 sin (1/2)`
इसके अलावा L.H.L. = `"f'"(1/2) = lim_("h" -> 0) ("f"(1/2 - "h") - "f"(1/2))/(-"h")`
= `lim_("h" -> 0) (|2(1/2 - "h") - 1|[- sin (1/2 - "h")] - 0)/(-"h")`
= `(|-2"h"|[-sin(1/2 - "h")])/(-"h")`
= `- 2 sin (1/2)`
∴ R.H.L. = `"f'"(1/2)` ≠ L.H.L. `"f'"(1/2)`
तो, दिया गया फलन f(x) x = `1/2` पर भिन्न नहीं है।
∴ f(x) में भिन्न है `"R" - {1/2}`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु x = 0 पर असंतत है।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
`log (x + sqrt(x^2 + "a"))`
sinmx . cosnx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
`sin xy + x/y` = x2 – y
tan–1(x2 + y2) = a
[0, 1] में f(x) = x(x – 1)2
माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।
फलन f(x) = `"e"^|x|`
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
x3 के सापेक्ष x2 अवकलज ______ है।
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।