हिंदी

X = 0 पर, f(x) = ,यदि,यदि{x2sin 1x, यदि x≠00,यदि x=0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`

योग

उत्तर

दिया गया है कि, x = 0 पर f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`  

भिन्नता के लिए हम जानते हैं कि:

Lf'(c) = Rf'(c)

∴ Lf'(0) = `lim_("h" -> 0)  ("f"(0 - "h") - "f"(0))/(-"h")`

= `lim_("h" -> 0) ((0 - "h")^2 sin  1/((0 - "h")) - 0)/(-"h")`

= `("h"^2 sin  (- 1/"h"))/(-"h")`

= `"h"* sin (1/"h")`

= `0 xx [-1 ≤ sin  (1/"h") ≤ 1]`

= 0

Rf'(0) = `lim_("h" -> 0)  ("f"(0 + "h") - "f"(0))/"h"`

= `lim_("h" -> 0)  ((0 + "h")^2 sin (1/(0 + "h") - 0))/"h"`

= `lim_("h" -> 0) ("h"^2 sin (1/"h"))/"h"`

= `lim_("h" -> 0) "h" * sin (1/"h")`

= `0 xx [-1 ≤ sin (1/"h") ≤ 1]`

= 0

अतः, Lf'(0) = Rf'(0) = 0

अतः, f(x) x = 0 पर अवकलनीय है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 21 | पृष्ठ १०७

संबंधित प्रश्न

अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


y = |x – 1| एक संतत फलन है।


cos |x| प्रत्येक स्थान पर अवकलनीय है।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


x = 0 पर f(x) = `{{:(|x|cos  1/x",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


x = 2 पर, f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  


`sin^-1  1/sqrt(x + 1)`


(sin x)cosx


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sec(x + y) = xy


(x2 + y2)2 = xy


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


 यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×