हिंदी

X = 2 पर, f(x) = ,यदि,यदि{x[x], यदि 0≤x<2(x-1)x, यदि 2≤x<3 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = 2 पर, f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  

योग

उत्तर

हम जानते हैं कि एक फलन f अपने प्रांत में एक बिंदु ‘a’ पर अवकलनीय होता है यदि

Lf'(x) = Rf'(c)

जहाँ Lf'(c) = `lim_("h" -> 0) ("f"("a" - "h") - "f"("a"))/(-"h")` और Rf'(c) = `lim_("h" -> 0)  ("f"("a" + "h") - "f"("a"))/"h"`

यहाँ, x = 2 पर f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  

Lf'(c) = `lim_("h" -> 0) ("f"(2 - "h") - "f"(2))/(-"h")`

= `lim_("h" -> 0) ((2 - "h")[2 - "h"] - (2 - 1)2)/(-"h")`

= `lim_("h" -> 0) ((2 - "h") * 1 - 2)/(-"h")`  ....[∵ [2 – h] = 1]

= `lim_("h" -> 0) (2 - "h" - 2)/(-"h")`

= 1

Rf'(c) = `lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`

= `lim_("h" -> 0) ((2 + "h" - 1)(2 + "h") - (2 - 1)*2)/"h"`

= `lim_("h" -> 0) ((1 + "h")(2 + "h") - 2)/"h"`

= `lim_("h" -> 0) (2 - "h" + 2"h" + "h"^2 - 2)/"h"`

= `lim_("h" -> 0) (3"h" + "h"^2)/"h"`

= `lim_("h" -> 0) ("h"(3 + "h"))/"h"`

= 3

Lf"(2) ≠ Rf'(2)

इसलिए, x = 2 पर f(x) अभेद्य नहीं है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 20 | पृष्ठ १०७

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि"  x ≠ 0),(0",",  "यदि"  x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु  x = 0 पर असंतत है।


फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।


उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,


 फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है


 cos x के सापेक्ष sin x का अवकलज ______ है।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


 x = a पर  f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "यदि"  x ≠ 0),(0",",  "यदि"  x = "a"):}` 


 x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "यदि"  x ≠ 0),(1/2",",  "यदि"  x = 0):}` 


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


`log (x + sqrt(x^2 + "a"))`


sinmx . cosnx


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


tan–1(x2 + y2) = a


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।


[0, 1] में f(x) = x(x – 1)2


`[0, pi/2]` esa f(x) = `sin^4x + cos^4x` 


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[1, 4] में f(x) = `1/(4x - 1)`


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×