Advertisements
Advertisements
प्रश्न
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
उत्तर
हम जानते हैं कि एक फलन f अपने प्रांत में एक बिंदु ‘a’ पर अवकलनीय होता है यदि
Lf'(x) = Rf'(c)
जहाँ Lf'(c) = `lim_("h" -> 0) ("f"("a" - "h") - "f"("a"))/(-"h")` और Rf'(c) = `lim_("h" -> 0) ("f"("a" + "h") - "f"("a"))/"h"`
यहाँ, x = 2 पर f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
Lf'(c) = `lim_("h" -> 0) ("f"(2 - "h") - "f"(2))/(-"h")`
= `lim_("h" -> 0) ((2 - "h")[2 - "h"] - (2 - 1)2)/(-"h")`
= `lim_("h" -> 0) ((2 - "h") * 1 - 2)/(-"h")` ....[∵ [2 – h] = 1]
= `lim_("h" -> 0) (2 - "h" - 2)/(-"h")`
= 1
Rf'(c) = `lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`
= `lim_("h" -> 0) ((2 + "h" - 1)(2 + "h") - (2 - 1)*2)/"h"`
= `lim_("h" -> 0) ((1 + "h")(2 + "h") - 2)/"h"`
= `lim_("h" -> 0) (2 - "h" + 2"h" + "h"^2 - 2)/"h"`
= `lim_("h" -> 0) (3"h" + "h"^2)/"h"`
= `lim_("h" -> 0) ("h"(3 + "h"))/"h"`
= 3
Lf"(2) ≠ Rf'(2)
इसलिए, x = 2 पर f(x) अभेद्य नहीं है।
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु x = 0 पर असंतत है।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है
cos x के सापेक्ष sin x का अवकलज ______ है।
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
x = a पर f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "यदि" x ≠ 0),(0",", "यदि" x = "a"):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
`log (x + sqrt(x^2 + "a"))`
sinmx . cosnx
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
tan–1(x2 + y2) = a
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।
[0, 1] में f(x) = x(x – 1)2
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[1, 4] में f(x) = `1/(4x - 1)`
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।