Advertisements
Advertisements
प्रश्न
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
उत्तर
हमारे पास f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
क्योंकि, f(x) x = 0 पर संतत है।
∴ f(0) = `lim_(x -> 0) "f"(x)`
∴ `1/2 = lim_(x -> 0) (1 - cos "k"x)/(xsinx)`
= `lim_(x -> 0) (1 - cos^2"k"x)/(xsinx) * 1/(1 + cos "k"x)`
= `lim_(x -> 0) (sin^2"k"x)/(xsinx) * 1/(1 + cos"k"x)`
= `lim_(x -> 0) (((sin "k"x)/("k"x))^2 "k"^2)/((sinx)/x) * 1/(1 + cos "k"x)`
= `"k"^2/1 * 1/(1 + 1)`
= `"k"^2/2`
⇒ k2 – 1
⇒ k = ±1
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
x के सापेक्ष log10 का अवकलज ______ है।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
sinn (ax2 + bx + c)
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
sec(x + y) = xy
(x2 + y2)2 = xy
[–1, 1] में f(x) = log(x2 + 2) – log3
[1, 4] में f(x) = `1/(4x - 1)`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
x3 के सापेक्ष x2 अवकलज ______ है।
यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।