Advertisements
Advertisements
प्रश्न
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
उत्तर
यहाँ (x – a)2 + (y – b)2 = (दिया है) …(1)
x के सापेक्ष अवकलन करने पर,
`=> 2 (x - a) + 2(y - b)^2 dy/dx = 0`
`=> (x - a) + (y - b) dy/dx = 0` ...(2)
पुनः x के सापेक्ष अवकलन करने पर,
`1 + dy/dx * dy/dx + (y - b) (d^2 y)/dx^2` = 0
`1 + (dy/dx)^2 + (y - b) (d^2y)/dx^2` = 0
`=> (y - b) = - {(1 + (dy/dx)^2)/((d^2y)/dx^2)}` ...(3)
(2) में (y - b) का मान रखने पर,
`(x - a) = (1 + (dy/dx)^2)/((d^2 y)/dx^2) * dy/dx`
या `(x - a) = {(1 + (dy/dx)^2)/((d^2y)/dx^2)}(dy/dx)` ...(4)
(1) में (3) व (4) से (x - a) तथा (y - b) का मान रखने से,
`{1 + (dy/dx)^2}^2/((d^2y)/dx^2)^2 * (dy/dx)^2 + {(1 + (dy/dx)^2)/((d^2y)/dx^2)} = c^2`
`((d^2y)/dx^2)^2` से गुणा करने पर,
`[1 + (dy/dx)^2]^2 (dy/dx)^2 + [1 + (dy/dx)^2]^2`
`= c^2 ((d^2y)/dx)^2`
`=> [1 + (dy/dx)^2]^2 [(dy/dx)^2 + 1] = c^2 ((d^2y)/dx^2)^2`
`=> {1 + (dy/dx)^2}^3 = c^2 ((d^2y)/dx^2)^2`
वर्गमूल लेने पर,
`therefore {1 + (dy/dx)^2}^(3//2)/((d^2y)/dx^2)` = c ...(a और b से स्वतंत्र एक स्थिर राशि है।)
APPEARS IN
संबंधित प्रश्न
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है
cos x के सापेक्ष sin x का अवकलज ______ है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
`cos(tan sqrt(x + 1))`
`sin^-1 1/sqrt(x + 1)`
(x + 1)2(x + 2)3(x + 3)4
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
`sin xy + x/y` = x2 – y
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।
[1, 4] में f(x) = `1/(4x - 1)`
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।